Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

OLEDs – leuchtende flexible Flächen

04.09.2013
Materialien für organische Leuchtdioden (OLEDs) an Druck- und Beschichtungsverfahren anzupassen, ist Ziel des Projekts „cyFLEX“.

Die gedruckten OLEDs könnten künftig leuchtende Flächen für Verpackungen, Beschilderungen und Werbetafeln ermöglichen.


OLEDs liefern ein gleichmäßiges flächiges Licht und lassen sich auf biegsame Trägermaterialien aufbringen. Foto: Ralph Eckstein

In cyFLEX kooperieren das Lichttechnische Institut (LTI) des KIT und das Unternehmen cynora GmbH, um die ganze Wertschöpfungskette vom Material bis zum Bauteil abzudecken.

Das neu gestartete Projekt mit einem Gesamtvolumen von 576 000 Euro läuft zwei Jahre.

Das Bundesministerium für Bildung und Forschung fördert cyFLEX mit 319 000 Euro.

Organische Leuchtdioden sind aus nanometerdünnen organischen Schichten aufgebaut. Sie liefern ein gleichmäßiges flächiges Licht ohne Schatten. Überdies zeichnen sich OLEDs durch ihre Flexibilität aus: Sie lassen sich auf biegsame Trägermaterialien aufbringen, beispielsweise auf Kunststofffolien, und eröffnen damit die Möglichkeit, faltbare oder rollbare ultradünne Displays und selbstleuchtende Verpackungen herzustellen. Auf niedermolekularen Verbindungen, sogenannten „small molecules“, basierende OLEDs zeichnen sich gegenüber Polymer-OLEDs durch höhere Energieeffizienz, bessere Qualität und längere Lebensdauer aus. Allerdings werden Small-Molecule-OLEDs bisher fast ausschließlich über die materialintensive Vakuumverdampfung teilweise teurer Metallkomplexe gefertigt. „Um hochwertige OLEDs zu wettbewerbsfähigen Kosten herzustellen, bedarf es der Entwicklung preiswerter metallorganischer Moleküle und deren Anpassung an geeignete Druck- und Beschichtungsprozesse“, erklärt Dr. Norman Mechau, Gruppenleiter am Lichttechnischen Institut des KIT.

Daran arbeiten Forscher im Verbundprojekt cyFLEX: Die cynora GmbH hat optoelektronische Emittermaterialien auf der Basis des kostengünstigen und gut verfügbaren Zentralmetalls Kupfer entwickelt. Diese patentierten Materialien sollen im Rahmen von cyFLEX gezielt modifiziert werden. Lösungs-, Viskositäts-, Benetzungs- und Schichtbildungseigenschaften sollen so verändert werden, dass die Materialien sich in flüssige Formulierungen überführen, als homogene Dünnfilme auftragen und damit in massenproduktionstauglichen Druck- und Beschichtungsverfahren einsetzen lassen.

Ein Konsortium aus dem KMU cynora und dem LTI des KIT mit Einbeziehung der Forschungs- und Transferplattform InnovationLab (iL) GmbH bearbeitet in cyFLEX die Anpassung der kupferbasierten Emittermaterialien an Druck- und Beschichtungsverfahren, die Entwicklung von OLED-Tinten sowie Aspekte der Flüssigprozessierung und des großflächigen Druckens. Geplant ist die Herstellung einer gedruckten flexiblen OLED-Folie in einer Kleinserie. So könnten Verpackungen mit leuchtenden und beweglichen Bildern, Logos und Texten künftig neue Impulse für das Produktmarketing liefern. „Denkbar wäre beispielsweise auch, dass die Lichteffekte erst dann einsetzen, wenn ein Kunde sich dem Produkt nähert, um auf dieses aufmerksam zu machen“, erklärt Dr. Norman Mechau.

Die cynora GmbH erforscht neuartige organische Halbleiter, die sich dank ihrer physikalischen Eigenschaften als emittierende Leuchtstoffe in organischen Leuchtdioden einsetzen lassen, und deckt die gesamte Material- und Bauteilentwicklung ab: vom Design neuer Funktionsmoleküle für organische Leuchtdioden über deren Synthese im Labor bis hin zum Testen der Materialien durch Herstellen von OLED-Bauteilen. Dabei geht es unter anderem darum, die Effizienz der OLEDs weiter zu steigern, die Lebensdauer zu verbessern und die Herstellungskosten zu senken. Die cynora GmbH hat ihren Sitz in einem der KIT-Hightech-Inkubatoren am KIT- Campus Nord. Weitere Informationen unter http://www.cynora.com

Die InnovationLab GmbH (iL) GmbH ist eine gemeinsame anwendungsorientierte Forschungs- und Transferplattform von Wissenschaft und Wirtschaft in der Metropolregion Rhein-Neckar. Getragen wird sie von den Universitäten Heidelberg und Mannheim, dem Karlsruher Institut für Technologie (KIT) sowie den Unternehmen BASF SE, Merck KGaA, Heidelberger Druckmaschinen AG und SAP AG.

Weiterer Kontakt:
Margarete Lehné, Pressereferentin, Tel.: +49 721 608-48121, Fax: +49 721 608-43658, E-Mail: margarete.lehne@kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und gebaute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9000 Mitarbeiterinnen und Mitarbeitern, darunter knapp 6000 in Wissenschaft und Lehre, sowie 24 000 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | KIT-Presse
Weitere Informationen:
http://www.kit.edu
http://www.cynora.com

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie