Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Material für schnellere Elektronik

27.06.2011
Das neuartige Material Graphen verspricht schnellere optische und elektronische Bauteile zu ermöglichen.

An der Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität (TU) Wien konnten Lichtdetektoren aus Graphen erzeugt und erstmals genau analysiert werden.


Graphen: Durch Lichteinstrahlung werden Ladungsträger freigesetzt und Strom beginnt zu fließen. Copyright F. Aigner / TU Wien

Es ist ein Material, in das die Wissenschaft große Hoffnung setzt: Graphen, eine wabenförmige Kohlenstoffstruktur aus nur einer einzigen Atomschicht, zeigt bemerkenswertes physikalisches Verhalten. 2010 wurde für seine Entdeckung der Physiknobelpreis vergeben. Am Institut für Photonik der TU Wien interessiert man sich besonders für die optischen und elektronischen Eigenschaften dieses Materials. Die TU-Wissenschaftler konnten nun zeigen, wie außerordentlich rasch Graphen Lichtpulse in elektrische Signale umwandelt. Damit könnte der Datenaustausch zwischen Computern entscheidend verbessert werden. Die Ergebnisse wurden nun im Fachjournal "Nano Letters" veröffentlicht.

Lichtpulse in Strom umwandeln

Wenn man Daten durch Lichtpulse überträgt, wie das etwa in einem Glasfaserkabel geschieht, dann müssen diese Pulse anschließend in elektrische Signale verwandelt werden, die der Computer weiterverarbeiten kann. Diese Umwandlung von Licht in elektrischen Strom geschieht über den Photoelektrischen Effekt, den Albert Einstein erklärte. Trifft Licht auf bestimmte Materialien, können Elektronen plötzlich aus ihrem festen Platz gelöst werden und sich frei bewegen – elektrischer Strom beginnt zu fließen. „Solche Lichtdetektoren, die mit elektrischen Signalen auf Lichtbestrahlung reagieren, gibt es schon lange. Wenn man sie allerdings aus Graphen herstellt, reagieren sie auf das Licht wesentlich schneller als andere Materialien das können“, erklärt Alexander Urich, der gemeinsam mit Thomas Müller und Professor Karl Unterrainer an der TU Wien die elektrischen und optischen Eigenschaften von Graphen untersuchte.

Analyse mit ultrakurzen Laserpulsen

Dass Graphen in der Lage ist, Licht ungeheuer schnell in elektrische Signale umzuwandeln, konnte Thomas Müller schon im Vorjahr zeigen. Die genaue Reaktionszeit des Materials konnte zunächst aber noch nicht genau bestimmt werden – der Photoeffekt in Graphen läuft schneller ab, als man mit herkömmlichen elektronischen Methoden messen konnte. Erst jetzt konnte mit aufwändigen technischen Tricks Genaueres über das Material ermittelt werden: Bei den Experimenten an der TU Wien werden kurz hintereinander zwei ultrakurze Laserpulse auf den Graphen-Photodetektor abgefeuert, gemessen wird der Strom, der dabei entsteht.. Variiert man den zeitlichen Abstand zwischen den Lichtpulsen, so lässt sich feststellen, mit welcher maximalen Frequenz die Detektoren betrieben werden können. „Mit Hilfe dieser Methode konnten wir zeigen, dass die von uns hergestellten Detektoren bis zu einer Frequenz von 262 GHz verwendet werden können“, sagt Thomas Müller (TU Wien). Damit läge die theoretisch erreichbare Obergrenze der Datenübertragung mit Graphen-Photodetektoren bei mehr als 30 Gigabyte pro Sekunde. Inwieweit das technisch umsetzbar ist, wird sich erst zeigen, doch das Resultat verdeutlicht das große Potential von Graphen für besonders schnelle optoelektronische Bauteile.

Schnelles Signal – schnell wieder vorbei

Der wesentliche Grund für die hohen Frequenzen, die man mit den neuartigen Licht-Detektoren erreichen kann, ist die kurze Lebensdauer der Ladungsträger in Graphen. Die Elektronen, die durch das Licht aus ihrem Platz gelöst werden und zum elektrischen Stromfluss beitragen, suchen sich schon nach wenigen Picosekunden (Millionstel einer Millionstelsekunde, 10^(-12) Sekunden) einen neuen, festen Platz – und sobald das geschehen ist, kann auch schon das nächste Lichtsignal kommen, neue Photoelektronen herauslösen und das nächste elektrisches Signal erzeugen.

Die schnelle „Reaktionszeit“ von Graphen ist ein weiterer Eintrag auf der Liste der bemerkenswerten Eigenschaften des Materials. In Graphen können sich außerdem elektrische Ladungsträger außerordentlich weit bewegen, ohne gestört zu werden. Graphen kann Licht vom infraroten bis zum sichtbaren Bereich des Spektrums absorbieren – im Gegensatz zu gewöhnlichen Halbleitern, die nur auf einen schmalen Bereich des Spektrums beschränkt sind. Außerdem kann Graphen Wärme extrem gut leiten und kann mit ungeheurer Kraft gespannt werden, ohne zu reißen.

Originalpublikation:
A. Urich, K. Unterrainer, T. Müller; Intrinsic Response Time of Graphene Photodetectors, Nano Letters (2011), DOI: 10.1021/nl2011388
Rückfragehinweis:
Dipl. Phys. Alexander Urich
Institut für Photonik
Technische Universität Wien
Gusshausstraße 25-29, 1040 Wien
T: +43-1-58801-38785
alexander.urich@tuwien.ac.at
Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten