Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Material liefert Baustein zur Erklärung der Supraleitung

20.10.2009
Materialien, die Strom nahezu ohne Widerstand leiten, so genannte Supraleiter, lassen Ingenieurherzen höher schlagen. Physiker weltweit forschen an einer Erklärung für dieses physikalische Phänomen.

Denn noch weiß niemand so genau, warum manche Stoffe unterhalb einer bestimmten Temperatur plötzlich supraleitend werden. Forscher des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) stellen in der aktuellen Ausgabe der Zeitschrift Nature Materials neue Ergebnisse vor, die einen alten Streit um die richtige Theorie lösen könnten.

Sicher ist, dass in der Nähe der Sprungtemperatur - unterhalb derer der elektrische Widerstand kaum noch messbar ist - ein Phasenübergang von "nichtleitend" zu "leitend" stattfindet: die Atome im Kristallgitter sortieren sich um; das Material kann neue Eigenschaften erhalten.

Eine Theorie geht davon aus, dass die Supraleitung als Eigenschaft bereits in den Ausgangsstoffen der Materialien, aus denen Supraleiter hergestellt werden, verankert ist: diese Ausgangsstoffe sind immer Isolatoren, also Stoffe, die den Strom nicht leiten. Leitend werden sie erst durch eine Dotierung, also wenn man Fremdatome ins Kristallgitter einbaut. Die zweite Theorie geht davon aus, dass in der Nähe der Sprungtemperatur im Material zwei Phasen gegeneinander "kämpfen" und dabei Supraleitung entsteht.

"Die Richtigkeit dieser Theorie wird durch unsere Ergebnisse bestätigt", sagt Dimitri Argyriou vom HZB.

Zusammen mit seinem Team hat er eine Verbindung aus Lanthan-Strontium-Manganat untersucht. Dies ist ein Material, das zwar kein Supraleiter ist, aber ebenso wie diese durch Dotierung eines Isolator-Stoffes hergestellt wird. Lanthan-Strontium-Manganat ist allerdings nur ein schlecht leitendes Metall. Mit Hilfe der Neutronenstreuung haben Argyriou und sein Team dieses neuartige Metall näher untersucht und dabei einen Unterschied zu normalen Metallen entdeckt.

In realen Metallen wie Kupfer gibt es freibewegliche Elektronen, die für den Stromfluss sorgen, wobei sich die Elektronen nach heutiger Theorie zu einem so genannten Elektronengas zusammenfinden.

Im Lanthan-Strontium-Manganat - so die Erkenntnis der HZB-Forscher - verhalten sich die freien Elektronen nur für kurze Zeit wie ein Elektronengas. Sie "vergessen" nicht, dass sie ursprünglich aus einem Isolator stammen und werden plötzlich wieder im Kristallgitter eingeschlossen. Dieser Zustand wechselt hin und her, sodass sie mal frei beweglich (leitend) und dann wieder eingeschlossen (nicht leitend) sind.

"Dieses Verhalten beweist, dass die Isolator-Eigenschaft im Gedächtnis der dotierten Materialien verankert bleibt und die Eigenschaft Supraleitung nicht in dem Grundstoff existiert", schlussfolgert Dimitri Argyriou.

Institut Komplexe Magnetische Materialien
Dr. Dimitri Argyriou
Tel.: (030) 8062-3016
Fax: (030) 8062-2999
Email: argyriou@helmholtz-berlin.de
Pressestelle
Dr. Ina Helms
Tel.: (030) 8062-2034
Fax: (030) 8062-2998
Email: ina.helms@helmholtz-berlin.de

Dr. Ina Helms | idw
Weitere Informationen:
http://www.helmholtz-berlin.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Perowskit-Solarzellen: Es muss gar nicht perfekt sein
15.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Fraunhofer IMWS testet umweltfreundliche Mikroplastik-Alternativen in Kosmetikartikeln
11.01.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics