Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Weg zu simultanem Auftreten von Ferroelektrizität und Magnetismus in organischem Material

13.08.2012
In einem soeben erschienenen Beitrag im renommierten Fachjournal "Nature Materials" berichten Forscher der Universitäten Augsburg und Frankfurt/M. über einen neuartigen Mechanismus in einem organischen Material, der zu simultaner magnetischer und ferroelektrischer Ordnung führt.

Materialien, die verschiedene Arten "ferroischer“ Ordnung kombinieren, sogenannte Multiferroika, könnten einen Quantensprung für die Zukunft der Elektronik bedeuten, insbesondere in der elektronischen Schaltungs-, Sensor- und Speichertechnologie. Denn in Multiferroika treten Magnetismus (die Ausrichtung mikroskopischer Magnete) und Ferroelektrizität (die Ausrichtung elektrischer Dipole) simultan auf.

In ihrem soeben in Nature Materials erschienenen Beitrag "Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole driven magnetism" berichten nun die Arbeitsgruppen von Prof. Dr. Alois Loidl und PD Dr. Peter Lunkenheimer (Universität Augsburg) sowie von Prof. Dr. Jens Müller und Prof. Dr. Michael Lang (Goethe-Universität Frankfurt) von einer überraschenden Entdeckung: Es ist ihnen gelungen, Multiferroizität erstmals in einem Ladungstransfersalz - in einem organischen (kohlenstoffbasierten) Festkörper also - nachzuweisen und damit eine neue Klasse multiferroischer Materialien zu erschließen.

Eine Überraschung in gut bekannten Materialien

Überraschend ist diese Entdeckung, weil Ladungstransfersalze an sich schon seit langem bekannt und in der Grundlagenforschung Gegenstand intensiver Untersuchungen sind. Diese Materialien weisen eine erstaunliche Fülle interessanter physikalischer Phänomene auf, so etwa Supraleitung, magnetisch- oder ladungsgeordnete Zustände und Metall-Isolator-Übergänge. Solche Phänomene werden in Augsburg und Frankfurt im Rahmen der DFG-Sonderforschungsbereiche/TRR "From Electronic Correlations to Functionality" und "Condensed Matter Systems with Variable Many-Body Interactions" untersucht.

Die ferroelektrische ermöglicht erst die magnetische Ordnung

Was die Augsburger und Frankfurter Physiker entdeckt haben, ist insofern spektakulär, als in dem untersuchten Material ein neuer Mechanismus auftritt, bei dem die ferroelektrische Ordnung die magnetische überhaupt erst möglich macht: Durch eine zunächst auftretende Ordnung von Elektronen werden konkurrierende magnetische Wechselwirkungen unterdrückt, die zuvor das spontane Ordnen der magnetischen Momente behindert haben. Und durch diese Unterdrückung wird die antiferromagnetische, also antiparallele Ausrichtung dieser Momente ermöglicht.
Hochrelevant für künftige Elektronik-Anwendungen

Inzwischen arbeiten die Augsburger und Frankfurter Physiker bereits daran, diese neuartigen multiferroischen Eigenschaften in einem organischen Material im Detail zu verstehen und eine mögliche Wechselwirkung zwischen elektrischer und magnetischer Ordnung nachzuweisen. Eine solche Wechselwirkung wäre für mögliche Anwendungen insbesondere in der elektronischen Schaltungs-, Sensor- und Speichertechnologie von hoher Relevanz.
Originalbeitrag:

Peter Lunkenheimer, Jens Müller, Stephan Krohns, Florian Schrettle, Alois Loidl, Benedikt Hartmann, Robert Rommel, Mariano de Souza, Chisa Hotta, John A. Schlueter, Michael Lang: "Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole driven magnetism". - http://dx.doi.org/10.1038/NMAT3400

Ansprechpartner in Augsburg:

• Priv.-Doz. Dr. Peter Lunkenheimer
Telefon +49(0)821/598-3649
peter.lunkenheimer@physik.uni-augsburg.de

• Prof. Dr. Alois Loidl
Telefon +49(0)821/598-3600
alois.loidl@physik.uni-augsburg.de

Lehrstuhl für Experimentalphysik V/EKM, Universität Augsburg
Universitätsstraße 1, 86159 Augsburg
http://www.physik.uni-augsburg.de/exp5/

Ansprechpartner in Frankfurt am Main:

• Prof. Dr. Jens Müller
Telefon +49(0)069/798-47274
j.mueller@physik.uni-frankfurt.de

• Prof. Dr. Michael Lang
Telefon +49(0)069/798-47241
michael.lang@physik.uni-frankfurt.de

Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main
Max-von-Laue-Straße 1, 60438 Frankfurt am Main
http://www.pi.physik.uni-frankfurt.de/index.html

Klaus P. Prem | idw
Weitere Informationen:
http://www.physik.uni-augsburg.de/exp5/
http://www.pi.physik.uni-frankfurt.de/index.html
http://dx.doi.org/10.1038/NMAT3400

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik