Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Verbundstoff schützt elektronische Bauteile

14.12.2012
ETH-Forscher: "Material ist weicher als Haut und härter als Knochen"

Wenn es um den Schutz fester elektronischer Bauteile auf beweglichen Oberflächen geht, steht die Materialforschung vor einer enormen Herausforderung.


Innovation: Material mit besonderen Eigenschaften (Foto: Studart research group)

Ein Team Schweizer Wissenschaftler hat nun erstmals einen neuartigen Verbundstoff auf Polyurethan-Basis vorgestellt, der gewissermaßen einen fließenden Übergang von weichen zu harten Materialien ermöglicht. "Unser Material ist auf der einen Seite weicher als Haut und auf der anderen Seite härter als Knochen", erklärt Projektleiter André Studart, Professor für Komplexe Materialien am Departement Materialwissenschaft der ETH Zürich, die grundlegende Innovation im Gespräch mit pressetext.

Von Natur inspiriert

Die Inspiration für ihre Entwicklung haben sich Studart und seine Kollegen aus der Natur geholt: "Um bewegliche Sehnen mit starren Knochen zu verbinden, musste sich die Natur etwas einfallen lassen: Sie löst das Problem, indem sie die geschmeidigen Bestandteile der Sehnen und die festen Teile der Knochen fließend ineinander übergehen lässt", erläutert Studart. Dieser nahtlose Übergang von weich zu hart sei dabei wesentlich strapazierfähiger, als wenn die beiden Materialien übergangslos zusammengefügt werden. "Denselben Trick wenden wir auch an", so der Forscher.

Im Gegensatz zu den natürlichen Beispielen überbrückt der Härtegradient zwischen der weichsten und der härtesten Schicht des neuen Stoffes allerdings einen 100.000-fachen Härteunterschied. "Härteunterschiede in diesem Umfang sind innerhalb von Verbundmaterialien bislang völlig undenkbar gewesen", betont Studart den Wert der eigenen Entwicklung. Zum Vergleich: Sehnen und Knochen unterscheiden sich lediglich um das Hundertfache, was ihren eigenen Härtegrad betrifft.

Vielseitige Anwendungsmöglichkeiten

Die Anwendungsmöglichkeiten für einen derartigen Verbundstoff sind enorm vielseitig. Wie die Schweizer Forscher im Rahmen ihrer neuesten Veröffentlichung in der Fachzeitschrift "Nature Communications" http://www.nature.com/ncomms/index.html aufzeigen, könnte ihre Entwicklung beispielsweise helfen, Elektronikbauteile auf flexiblen Oberflächen zu schützen. Der Trick dabei: Die Elektronikteile werden auf Schutzinseln aus dem neuen Verbundmaterial aufgesetzt. "In Belastungstests haben wir die flexible Polyurethan-Unterlage um mehr als 350 Prozent gedehnt. Die aufgesetzten Bauteile blieben dabei unbeschädigt", schildert Studart.

Daneben sieht Studart aber etwa auch Einsatzpotenzial im Bereich von medizinischen Implantaten oder in der Automobil- und Luftfahrtindustrie. "Sogar als Trägermaterial für flexible Elektronik, die in Kleidung eingearbeitet werden kann, oder für rollbare Bildschirme wäre das neue Material denkbar", ergänzt der Forscher. Derzeit stecke seine Entwicklung allerdings noch im Experimentierstadium. "Wir werden die Technik in Zukunft noch weiterentwickeln", so Studart abschließend.

Markus Steiner | pressetext.redaktion
Weitere Informationen:
http://www.mat.ethz.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics