Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Hochfrequenzprüfstand im Fraunhofer LBF: Lager optimieren, Vibrationen und Lärm minimieren

10.05.2016

Den Quellen von Lärm und Vibrationen auf den Grund zu gehen und effektive Gegenmaßnahmen zu entwickeln, gehört im Leistungsfeld Schwingungstechnik des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF zu den angestammten Forschungsschwerpunkten. In einem breiten Frequenzbereich untersucht und entwickelt das Institut passive und aktive Lager zur Entkopplung von Schwingungen. Jetzt hat das LBF seine Möglichkeiten erweitert und einen neuen Hochfrequenzprüfstand zur Ermittlung des dynamischen Transferverhaltens von Lagern in Betrieb genommen, mit dem Prüffrequenzen von bis zu 2000 Hertz möglich sind.

In nahezu allen technischen Bereichen werden hohe Anforderungen an Produkte gestellt. Abhängig vom Produkttyp stehen die Sicherheit, Funktionalität, das Design, der Komfort und die Kosten im Fokus. Für die Funktionalität, Effizienz und Sicherheit gelten zum Teil gesetzliche Vorgaben und normative Standards. Ergänzend werden an die Produkte kundenspezifische Anforderungen gestellt. Eventuelle Schwingungseinflüsse, in Form von Vibrationen und Lärm, werden mit negativen Komforteigenschaften in Verbindung gebracht.


Mit einer Frequenz von bis zu 2000 Hertz lassen sich Werkstoffe und Bauteile mit dem neuen Hochfrequenzprüfstand des Fraunhofer LBF untersuchen

Fraunhofer LBF, Ursula Raapke

Schwingungen können die genannten Produkteigenschaften beeinflussen und damit schon im Entwicklungsprozess zu Problemen führen. Daher ist es in der Produktentwicklung essentiell, die eingesetzten Werkstoffe und Bauteile zu prüfen und zu charakterisieren.

In Form von Lagern dienen sie zur schwingungstechnischen Entkopplung und steigern damit die Komforteigenschaften. Im Leistungsfeld Schwingungstechnik des Fraunhofer LBF gehört die Untersuchung und Entwicklung von passiven und aktiven Lagern zu den angestammten Forschungsschwerpunkten. Damit unterstützt das Institut seine Kunden begleitend während des Entwicklungsprozesses.

Die passiven und aktiven Lager haben die primäre Aufgabe, die Sicherheit der Ankopplung einer Schwingungsquelle zu gewährleisten, das Gewicht der Schwingungsquelle abzustützen und Schwingungen zu entkoppeln. Zu diesem Zweck ist eine zuverlässige experimentelle Kennwertermittlung erforderlich, um eine Beurteilung der Bauteileigenschaften sowie deren Auslegung hinsichtlich der gewünschten Systemcharakteristik zu gewährleisten.

Die dynamische Transfersteifigkeit ist dabei ein wichtiger Kennwert. Sie kennzeichnet in komplexen Größen das vibroakustische Transferverhalten und beschreibt die Trägheits-, Federungs- sowie Dämpfungseigenschaften bei verschiedenen Frequenzen. Üblicherweise erfolgt die dynamische Charakterisierung von Lagern meist mit servohydraulischen Prüfmaschinen, was die Verfügbarkeit qualitativ hochwertiger Messergebnisse auf niedrige Prüffrequenzen beschränkt.

Das Fraunhofer LBF setzt einen neuen Hochfrequenzprüfstand zur Ermittlung des dynamischen Transferverhaltens von Lagern ein. Der Prüfstand ist für Untersuchungen der dynamischen Steifigkeit bis 2000 Hertz konzipiert. Die eingesetzte Aktorik besteht aus einem elektromechanischen Spindelantrieb und einem elektrodynamischen Schwingerreger.

Den dynamischen Signalanteilen von bis zu acht Kilonewton (Sinus, Rauschen, Schock, Sinus über Rauschen, Zeitdaten) des Schwingerregers kann eine statische Vorlast von bis zu fünf Kilonewton überlagert werden. Der Probenraum mit den Abmessungen 550 x 300 x 300 Millimeter ermöglicht die Untersuchung von kleinen Werkstoffproben bis hin zu großen Lagern.

Während des Prüfbetriebs werden relevante Messgrößen kontinuierlich überwacht und aufgezeichnet. Die Prüfung unter Temperatureinfluss sowie deren Überwachung ist ebenfalls möglich. Die Eignung des Prüfstands für den spezifizierten Einsatz wurde in Anlehnung an die DIN Normenreihe 10846 nachgewiesen.

Anwendung finden die Prüftechnik und die daraus resultierenden Ergebnisse, wie beispielsweise dynamische Steifigkeit, Verlustwinkel und Kraft-Weg-Hystereseschleifen, im Rahmen des Entwicklungsprozesses von passiven und aktiven Lagern.

Der Einsatzzweck des Prüfstands besteht in der dynamischen Charakterisierung von Lagerungskomponenten, Entwicklung und Test von aktiven Lagern, Parametrierung und Validierung numerischer Simulationsmodelle und der Untersuchung von neuen Werkstoffen. Mit dem Ziel, Schwingungen zu entkoppeln, werden Werkstoffe und Bauteile in nahezu allen technischen Bereichen und damit Produkten eingesetzt. Die wesentlichen Industriezweige sind die Automobilindustrie, Transportindustrie, der Maschinen- und Anlagenbau sowie Konsumgüterindustrie.

Weitere Informationen:

http://www.lbf.fraunhofer.de/de/presse/presseinformationen/schwingungstechnik-ho...

Anke Zeidler-Finsel | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik