Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Oberfläche lässt Implantate fester einwachsen

04.10.2011
Durch eine spezielle Anwendung der plasmachemischen Oxidation ist es Thüringer Forschern gelungen, eine poröse, bioaktive Oberfläche auf Titanimplantaten zu erzeugen.

In einer vorklinischen Studie konnten die Chirurgen, Materialwissenschaftler und Implantathersteller nachweisen, dass die neuartige Oberfläche im Vergleich zu herkömmlichen Implantaten ein mehrfach festeres Einwachsen in das Knochengewebe ermöglicht. Seine Ergebnisse veröffentlichte der Forschungsverbund kürzlich im Fachjournal Biomaterials.


Elektronenmikroskopische Aufnahme der neuartigen porösen, bioaktiven Titanoxidoberfläche. Die von Thüringer Forschern entwickelte Beschichtungstechnik lässt Titanimplantate deutlich fester in den Knochen einwachsen (Maßstab entspricht 10 Mikrometer). Bild: Innovent e.V. Technologieentwicklung Jena

In den Knochen eingesetzte Implantate und Prothesen, die dauerhaft im Körper verbleiben sollen, müssen vor allem eines: schnell und sehr fest mit dem Knochengewebe verwachsen, um starken mechanischen Belastungen standhalten zu können. Das gilt für die Verankerung künstlicher Hüft-, Knie- oder Schultergelenke ebenso wie für Zahnimplantate im Kieferknochen.

„Aktuell sehen wir uns in der Orthopädie und Unfallchirurgie mit zwei zunehmenden Problemen konfrontiert: Erstens die frühzeitige Auslockerung von künstlichen Gelenken, und zweitens die fehlende Stabilität von Titanimplantaten im durch Osteoporose geschwächten Knochen“ sagt Dr. Michael Diefenbeck aus der Klinik für Unfall-, Hand und Wiederherstellungschirurgie am Universitätsklinikum Jena. Beide Fragestellungen geht der Unfallchirurg mit Titanimplantaten an, die über eine neuartige Oberfläche verfügen.

Entwickelt und getestet wurde die neue Implantatoberfläche im interdisziplinären Verbund mit Wissenschaftlern des INNOVENT e. V. in Jena, des Instituts für Materialwissenschaft und Werkstofftechnologie an der Friedrich-Schiller-Universität Jena und des Implantatherstellers Königsee Implantate GmbH. Die spezielle Außenschicht ist um ein Vielfaches dicker als die Titanoxidschicht auf herkömmlichen Implantaten oder Endoprothesen. Um sie herzustellen, modifizierte Dr. Christian Schrader von INNOVENT e.V. die Methode der Plasmachemischen Oxidation, ein elektrochemisches Verfahren, bei dem es zu einer Gasentladung im Elektrolyt kommt. „Wir konnten auf den Implantaten eine Titanoxidmatrix realisieren, die eine feinporige Oberfläche besitzt und in die Kalzium und Phosphor eingelagert ist“, so der Chemiker. „Die Poren sollen das Anwachsen und Verankern von Knochenzellen, Osteoblasten, am Implantat verbessern, und die bioaktiven Elemente deren Stoffwechsel beschleunigen“.

In einer vorklinischen Studie konnten die Wissenschaftler an einem Tiermodell zeigen, dass die Implantate mit der neuen Oberfläche sich um ein mehrfaches stabiler im Knochen verankern als herkömmliche Titanimplantate mit verschiedenen Oberflächen. Sowohl bei den mechanischen Belastungstests als auch bei histologischen Untersuchungen zur Neubildung von Knochengewebe direkt an der Implantatoberfläche erwies sich die bioaktive Titanoxidschicht als deutlich besser.

„Diese neuen vorklinischen Erkenntnisse sind nicht nur wissenschaftlich interessant, sondern legen die Grundlage für verträglichere und bioaktivere Implantate“ ist sich Prof. Dr. Klaus D. Jandt sicher. Der Spezialist für Biomaterialien hat den Lehrstuhl für Materialwissenschaft an der Friedrich-Schiller Universität Jena inne und arbeitet seit Jahren an der Entwicklung und Strukturierung von Materialien, die zu den verschiedensten Zwecken in biologische Systeme integriert werden.

Das zweijährige Verbundprojekt wurde vom Freistaat Thüringen mit EU-Mitteln in Höhe von 700 000 Euro gefördert. Für die Königsee Implantate GmbH bot es die Möglichkeit zur interdisziplinären wissenschaftlichen Zusammenarbeit. „Das stellt bei der Entwicklung neuer Verfahren für die Implantatherstellung und die Umsetzung in die industrielle Praxis einen wesentlichen Schwerpunkt unserer langfristigen Forschungs- und Entwicklungsstrategie dar", betont Geschäftsführer Frank Orschler.

Mit ihren bisherigen Erfahrungen wollen die Wissenschaftler die neuen Implantate anschließend auch klinisch testen. „Sie könnten zum Beispiel bei osteoporosebedingten Brüchen oder notwendigen Versteifungen zum Einsatz kommen“, so Chirurg Diefenbeck. Die verantwortungsvollen klinischen Studien werden noch etwa fünf Jahre in Anspruch nehmen, bevor die neuen Implantate den Patienten zugute kommen.

Originalliteratur:
Diefenbeck M, Mückley T, Schrader C, Schmidt J, Zankovych S, Bossert J, Jandt KD, Faucon M, Finger U. The effect of plasma chemical oxidation of titanium alloy on bone-implant contact in rats. Biomaterials (2011), doi:10.1016/j.biomaterials.2011.07.046
Kontakt:
Dr. Michael Diefenbeck
Klinik für Unfall-, Hand und Wiederherstellungschirurgie, Universitätsklinikum Jena
Tel.: 03641/9 32 28 53
E-Mail: Michael.Diefenbeck[at]med.uni-jena.de

Dr. Uta von der Gönna | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten