Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Materialien zur Konstruktion zweidimensionaler Quasikristalle

13.07.2016

Anders als klassische Kristalle besitzen Quasikristalle zwar ein übergeordnetes Muster, bestehen jedoch nicht aus periodischen Einheiten. Sie bilden so faszinierende Mosaike, deren Entstehung kaum verstanden ist. Forscher der Technischen Universität München (TUM) stellen nun im Rahmen einer internationalen Kooperation eine Methodik vor, mit der sich zweidimensionale Quasikristalle aus metall-organischen Netzwerken herstellen lassen. Dieser Ansatz ermöglicht es, neue quasikristalline Strukturen zu bauen und vielversprechende Materialien zu entwickeln.

Als der Physiker Daniel Shechtman 1982 die Ergebnisse seines letzten Experimentes ansah, war er so überrascht, dass er verblüfft drei Fragezeichen in sein Laborbuch notierte. Vor ihm lag ein kristallines Muster, das zu dieser Zeit als unmöglich galt.


Rastertunnelmikroskopische Aufnahme des quasikristallinen Netzwerks

Bild: J. I. Urgel / TUM


Quasikristallines Netzwerk aus mit para-Quaterphenyl–Dicarbonitril vernetzten Europium-Atomen auf einer Gold-Oberfläche (gelb)

Bild: Carlos A. Palma / TUM

Denn nach der seinerzeit kanonischen Lehrmeinung weisen Kristalle immer eine sogenannte Translationssymmetrie auf. Sie bestehen aus einer einzigen Grundeinheit, der sogenannten Elementarzelle, die sich in allen Raumrichtungen immer wieder genau gleich wiederholt.

Shechtmans Muster jedoch wies zwar auf eine globale Symmetrie hin, jedoch ließen sich die einzelnen Bausteine nicht durch einfache Verschiebung aufeinander abbilden – der erste Quasikristall war entdeckt. Trotz teilweiser massiver Kritik namhafter Kollegen hielt Shechtman unbeirrt an seinem Konzept fest und revolutionierte so das wissenschaftliche Verständnis von Kristallen und Festkörpern.

2011 wurde er dafür schlussendlich mit dem Nobelpreis für Chemie ausgezeichnet. Unter welchen Bedingungen und auf Grund welcher Mechanismen die faszinierenden Strukturen jedoch entstehen, bleibt bis heute jedoch vielfach ein Rätsel.

Ein neuer Baukasten für Quasikristalle

Nun haben Wissenschaftler um Wilhelm Auwärter und Johannes Barth, Professoren am Lehrstuhl für Oberflächenphysik der TU München in Zusammenarbeit mit der Hong Kong University of Science and Technology (HKUST, Prof. Nian Lin et al.) und dem spanischen Forschungsinstitut IMDEA Nanoscience eine neue Grundlage zum Bau zweidimensionaler Quasikristalle entwickelt, die sie dem Verständnis der wundersamen Muster einen großen Schritt näher bringt.

Im Rahmen eines Forschungsaufenthaltes an der HKUST gelangen dem TUM Doktoranden José Ignacio Urgel dabei die bahnbrechenden Messungen. „Wir besitzen nun ein neues Set an Bausteinen, aus denen wir viele verschiedene neue quasikristalline Strukturen bauen können“, erklären die TUM Physiker. „Diese Vielfalt eröffnet uns neue Möglichkeiten zu untersuchen, wie Quasikristalle entstehen.“

Den Forschern war es gelungen Europium – ein Metallatom aus der Klasse der Lanthanoide – mit organischen Verbindungen zu verknüpfen und so einen zweidimensionalen Quasikristall zu bauen, der sich potentiell sogar zu einem dreidimensionalen Quasikristall erweitern lässt. Bislang hatten Wissenschaftler aus metall-organischen Netzwerken zwar sehr viele periodische, teilweise hochkomplexe Strukturen bauen können, jedoch noch nie einen Quasikristall.

Die neue Netzwerkgeometrie konnten die Forscher mit Hilfe eines Rastertunnelmikroskops zudem in einmalig hoher Auflösung detailliert aufklären. Es zeigte sich ein Mosaik aus vier verschiedenen Grundelementen, die aus Drei- und Vierecken aufgebaut und unregelmäßig auf einem Substrat verteilt sind. Dabei lagern sich bestimmte dieser Grundelemente zu regulären 12-Ecken zusammen, die sich jedoch nicht durch parallele Verschiebung aufeinander abbilden lassen. Es entsteht ein komplexes Muster, ein kleines Kunstwerk auf atomarer Ebene das eine dodekagonale Symmetrie aufweist.

Interessante optische und magnetische Eigenschaften öffnen neue Türen

In zukünftigen Arbeiten planen die Forscher zunächst, die Wechselwirkungen der Metallzentren mit ihren Verbindungsstücken mit Hilfe von Computersimulationen und im Experiment zu variieren um zu verstehen, unter welchen Bedingungen sich zweidimensionale Quasikristalle bilden. Dieses Verständnis könnte helfen, in Zukunft gezielt neue quasikristalline Schichten zu entwickeln.

Solche Materialien sind vielversprechend. Denn die neuen metall-organischen quasikristallinen Netzwerke könnten Eigenschaften besitzen, die sie für viele verschiedene Anwendungsgebiete interessant machen. „Wir haben uns nun eine neue Spielwiese erschlossen, auf der wir nicht nur Quasikristallinität erforschen, sondern auch neue Funktionalitäten erschaffen können, vor allem in den Bereichen Optik und Magnetismus“, sagt Dr. David Écija vom IMDEA Nanoscience.

Zum einen könnten Wissenschaftler mit der neuen Methodik einmal gezielt quasikristalline Beschichtungen schaffen, die Photonen so beeinflussen, dass sie besser weitergeleitet oder nur bestimmte Wellenlängen durch das Material durchgelassen werden.

Außerdem könnten die Wechselwirkungen der Lanthanid-Bausteine in den neuen Quasikristallen helfen, magnetische Systeme mit ganz besonderen Eigenschaften zu entwickeln: Sogenannte „frustrierte Systeme“. Hier „stören“ sich die einzelnen Atome eines Kristallgitters so, dass an einem Gitterpunkt kein Energieminimum erreicht werden kann. Die Folge sind exotische magnetische Grundzustände, die beispielsweise als Informationsspeicher für künftige Quantencomputer erforscht werden.

Die Forschungsarbeit wurde unterstützt vom European Research Council (Advanced Grant MolArt), dem spanischen Ramón und Cajal Programm, der Comunidad de Madrid, dem Hong Kong Research Grants Council und dem TUM-HKUST Sponsorship Scheme for Targeted Strategic Partnerships.

Publikation:

Jóse I. Urgel, David Écija, Ran Zhang, Carlos-Andres Palma, Willi Auwärter, Nian Lin and Johannes V. Barth, Quasicrystallinity expressed in two-dimensional coordination lattices,
Nature Chemistry
Link: http://www.nature.com/nchem/journal/v8/n7/abs/nchem.2507.html

Kontakt:

Prof. Dr. Wilhelm Auwärter & Prof. Dr. Johannes V. Barth
Technische Universität München
James-Franck Straße 1, 85748 Garching, Germany
Tel.: +49 89 289 12399 – E-Mail: wau@tum.de
Web: http://www.e20.ph.tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: Nanoscience Quasikristall TUM magnetische Eigenschaften

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungsnachrichten

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungsnachrichten

Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln

24.07.2017 | Biowissenschaften Chemie