Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Materialien mit integrierten Funktionen

17.06.2015

Der Präsident der Universität Potsdam Prof. Oliver Günther und der Leiter des Fraunhofer-Instituts für Angewandte Polymerforschung IAP Prof. Alexander Böker haben eine engere wissenschaftliche Zusammenarbeit ihrer Einrichtungen vereinbart. Im Fokus steht die Integration biologischer und physikalisch-chemischer Funktionen in verschiedene Materialien. Der Ansatz hat erhebliches Potenzial zur Steigerung der Produktivität und Effizienz von Industrieprozessen. Neben dem Fraunhofer IAP und den Gruppen der Chemie, Physik und Biologie der Universität Potsdam soll auch das Fraunhofer-Institut für Zelltherapie und Immunologie IZI-BB am Standort Potsdam-Golm in die Kooperation einbezogen werden.

»Nachhaltigkeit und Effizienz sind übergeordnete Kriterien globaler Trends, die generell sowohl neue Materialien als auch effektive Verarbeitungsverfahren erfordern«, sagt Prof. Alexander Böker. Seit Februar 2015 leitet er das Fraunhofer-Institut für Angewandte Polymerforschung IAP Potsdam-Golm.


Foto: Fraunhofer und Uni Potsdam im Wissenschaftspark Potsdam-Golm.

Fraunhofer IAP, Fotograf: Lutz Hannemann

Gleichzeitig hat er eine Professur für Polymermaterialien und Polymertechnologien an der Universität Potsdam inne. Vor diesem Hintergrund soll nun die wissenschaftliche Zusammenarbeit zwischen Fraunhofer IAP und Universität Potsdam beträchtlich ausgebaut werden. Auch der Golmer Teil des Fraunhofer IZI wird intensiv in die Kooperation einbezogen.

Die effiziente Integration biologischer und physikalisch-chemischer Materialfunktionen in innovative Produkte bildet den Schwerpunkt der Forschungsarbeiten. Dabei sollen etwa Strukturmaterialien wie Gehäuse- oder Karosserieteile geschickt mit Funktionsmaterialien, etwa für Beleuchtungs-, Sensor oder Energiegewinnungsfunktionen, zu innovativen Produkten kombiniert werden. Ein weiteres Ziel ist, ein entsprechendes Produkt in möglichst wenigen Verarbeitungsschritten herzustellen.

Sowohl die Entwicklung neuer Werkstoffe, z. B. preiswerte Carbonfasern, alternative Verstärkungsfasern wie Basaltfasern, faserverstärkte Kunststoffe für den Leichtbau, chemisch recyclebare Duromere oder biobasierte Kunststoffe, als auch hochspezialisierter Funktionsmaterialien, u. a. für Bioanalytik, Medizintechnik, Sensoren, Aktoren, Leuchtdioden, Optik, Photovoltaik, wird gegenwärtig weltweit vorangetrieben.

Dabei erlangen organische (Polymer-)Materialien in allen Feldern zunehmende Bedeutung. Die Entwicklung von neuen Produkten wie dem Lab-on-chip, dem Taschentuchlabor, Implantate, selbstheilende Materialien, funktionsintegrierende Kunststoffteile für Luftfahrt und Fahrzeugbau oder funktionsintegrierende Chipkarten für die Sicherheitswirtschaft, erfordert dabei neben dem Einsatz der neuen Materialien insbesondere deren effektive Verarbeitung, z. B. in der intelligenten Kombination von Funktions- und Strukturmaterialien oder von biologischen, organischen und metallischen Werkstoffen als Hybridmaterialien.

Dabei spielen u. a. Oberflächen und Oberflächenmodifizierungen sowie neue funktionsintegrierende Produktionsverfahren mit möglichst wenigen Fertigungsschritten eine herausragende Rolle.

Die Golmer Partner wollen die vorhandenen Kompetenzen in den Einzeldisziplinen Materialentwicklung und Verarbeitungstechnologien zusammenzuführen und auf eine neue Qualitätsstufe bringen. »Die Kompetenz des Fraunhofer IZI-BB in der Bioanalytik und Bioprozessierung schafft vielfältige Möglichkeiten für eine noch intensivere Kooperation«, sagt Prof. Buller, Leiter des Fraunhofer IZI. Universitätspräsident Prof. Günther erklärt:

»In diesem thematischen Umfeld gibt es zahlreiche Querverbindungen zu Arbeitsschwerpunkten unserer Universität. Von derartigen Kooperationen kann unsere forschungsstarke Mathematisch-Naturwissenschaftliche Fakultät, die gerade erst drei Graduiertenkollegs bei der DFG eingeworben hat, direkt profitieren – eine echte Win-win-Situation. «


| Universität Potsdam |
Mit 20.000 Studierenden und fünf Fakultäten ist die 1991 gegründete Universität Potsdam die größte Hochschule Brandenburgs. Sie ist zugleich die einzige lehrerbildende Einrichtung des Landes. Ihre Forschungsschwerpunkte liegen in den Erdwissenschaften, der Funktionellen Ökologie und Evolutionsforschung, den Kognitionswissenschaften sowie in der Pflanzengenomforschung und Systembiologie. Die Universität ist eng vernetzt mit den Forschungseinrichtungen Potsdams und der Region. Ihre konsequente Internationalisierungsstrategie trägt dazu bei, den Wissenschaftsstandort Potsdam für Nachwuchskräfte aus dem In- und Ausland attraktiv zu machen. Potsdam Transfer, das universitäre Zentrum für Gründung und Innovation, Wissens- und Technologietransfer, sorgt dafür, Innovationen aus der Forschung in die Praxis zu überführen.

| Fraunhofer-Institut für Angewandte Polymerforschung IAP |
Das von Prof. Dr. Alexander Böker geleitete Fraunhofer IAP in Potsdam-Golm ist spezialisiert auf Forschung und Entwicklung von Polymeranwendungen. Es unterstützt Unternehmen und Partner bei der maßgeschneiderten Entwicklung und Optimierung von innovativen und nachhaltigen Materialien, Prozesshilfsmitteln und Verfahren. Neben der umweltschonenden, wirtschaftlichen Herstellung und Verarbeitung von Polymeren im Labor- und Pilotanlagenmaßstab bietet das Institut auch die Charakterisierung von Polymeren an. Synthetische Polymere auf Erdölbasis stehen ebenso im Fokus der Arbeiten wie Biopolymere und biobasierte Polymere aus nachwachsenden Rohstoffen. Die Anwendungsfelder sind vielfältig: Sie reichen von Biotechnologie, Medizin, Pharmazie und Kosmetik über Elektronik und Optik bis hin zu Anwendungen in der Verpackungs-, Umwelt- und Abwassertechnik oder der Automobil-, Papier-, Bau- und Lackindustrie.

| Institutsteil »Bioanalytik und Bioprozesse« des Fraunhofer-Instituts für Zelltherapie und Immunologie IZI-BB am Standort Potsdam/Golm |
Der Institutsteil »Bioanalytik und Bioprozesse« des Fraunhofer-Instituts für Zelltherapie und Immunologie am Standort Potsdam/Golm erarbeitet technologische Lösungen für die Biomedizin und Diagnostik sowie für die Biotechnologie und Bioproduktion. Das interdisziplinäre Team aus Naturwissenschaftlern, Ingenieuren und Technikern entwickelt leistungsfähige analytische Methoden zur Detektion und Validierung von Krankheitserregern und biologischen Markern sowie Verfahren zur Gewinnung, Handhabung und Manipulation von Zellen und Biomolekülen. In diesem Rahmen werden Anwendungen für die personalisierte Medizin, aber auch Biosensoren und Nachweisverfahren für die Bereiche Landwirtschaft und Umwelt, für ein weites Spektrum von Substanzklassen erarbeitet.
Wesentliche Bestandteile der Entwicklungsarbeit sind neben der Probenaufbereitung und Datenerfassung die Miniaturisierung und Automatisierung entsprechender Technologien, um zuverlässige, flexible und einfach bedienbare Prozessabläufe bereitzustellen. Weitere Schwerpunkte der Arbeiten in Potsdam sind die Herstellung von funktionellen Proteinen mittels zellfreier Proteinsynthese sowie die Lebendkultursammlung kryophiler Algen CCCryo, die als Bioressource für die Entwicklung von Produktionsprozessen neuartiger, industrieller Bioprodukte dient.

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP
Weitere Informationen:
http://www.iap.fraunhofer.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics