Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Forschergruppe: Licht und Materie

02.05.2012
Chemiker und Physiker arbeiten in einer neuen Forschergruppe an der Universität Würzburg zusammen. Ziel ihrer Arbeit soll es sein, die Herstellung neuer Materialien mit maßgeschneiderten Eigenschaften zu ermöglichen. Die Deutsche Forschungsgemeinschaft fördert das Projekt.
Sieht so die Energiequelle der Zukunft aus? Speziell synthetisierte Moleküle spalten mit Hilfe von Sonnenlicht Wasser in seine Bausteine Wasserstoff und Sauerstoff. Was in der Natur unter dem Stichwort „Photosynthese“ läuft, soll in Zukunft im Labor die Welt aus der Abhängigkeit von fossilen Brennstoffen befreien. Die künstliche Photosynthese soll die Menschheit mit einem schier unerschöpflichen und sauberen Energieträger versorgen.

Der Traum von der künstlichen Photosynthese als Energielieferanten im großen Maßstab ist von der Verwirklichung allerdings noch weit entfernt. Noch fehlt es an dem notwendigen Wissen über die grundlegenden Vorgänge im Inneren der potenziellen Wasserstoffproduzenten. Eine neue Forschergruppe an der Universität Würzburg arbeitet jedoch ab sofort daran; in ihr sind Wissenschaftler aus verschiedenen Teildisziplinen der Physik und der Chemie vertreten. Sprecher ist Professor Tobias Brixner, Leiter des Lehrstuhls für Physikalische Chemie I. Die Deutsche Forschungsgemeinschaft DFG unterstützt das Projekt in den kommenden drei Jahren mit rund 2,3 Millionen Euro.

Neue Materialien mit spezifischen Eigenschaften

Molekulare Aggregate und deren Reaktionen auf Licht stehen im Mittelpunkt des Interesses der Würzburger Forschergruppe. „Wir untersuchen die Wechselwirkung zwischen Licht und Materie mit dem Ziel, die dynamischen Prozesse und optische Phänomene zu verstehen und zu steuern“, sagt Brixner. Die daraus gewonnenen Erkenntnisse sollen die Wissenschaftler in die Lage versetzen, neue Materialien mit spezifischen Eigenschaften maßzuschneidern.

Diese Materialien sollen natürlich nicht nur der künstlichen Photosynthese zum Durchbruch verhelfen. Extrem sparsame Lichtquellen, abhörsichere Verschlüsselungstechnik, ultraschnelle Quantencomputer, günstige Photovoltaik-Elemente, Nano-Bauteile, die sich selbst reparieren können: All das ist denkbar, wenn erst die grundlegenden Prozesse in den molekularen Aggregaten aufgeklärt und verstanden sind.

Forschung an molekularen Aggregaten

Molekulare Aggregate: Darunter verstehen Chemiker die kleinsten Bausteine in makroskopischen Systemen, wie Flüssigkeiten, Lösungen oder Kristallen. In ihnen lagern sich Moleküle in bestimmten Strukturen zusammen und sind mal stärker, mal schwächer untereinander verbunden. Die vielfältigen Wechselwirkungen zwischen den einzelnen Bausteinen sind entscheidend für das Geschehen innerhalb der Aggregate, wenn Licht auf sie trifft.

„Die Besonderheit und damit der Reiz molekularer Aggregate im Vergleich zu beispielsweise anorganischen Festkörpern liegt darin, dass sich die Eigenschaften der molekularen ‚Grundbausteine‘ gezielt variieren lassen“, erklärt Brixner. Veränderungen auf der mikroskopischen Ebene ziehen dann auch Veränderungen im makroskopischen Maßstab nach sich. Allerdings liegen die genauen Vorgänge noch im Dunklen „In der Vergangenheit wurden zwar unzählige Moleküle ausführlich optisch untersucht, eine systematische Variation von Aggregaten fand aber in der Regel nicht statt“, so Brixner. In vielen Fällen könne man deshalb mit dem aktuellen Wissen die Eigenschaften eines komplexen Systems nicht aus den Eigenschaften der zugrundeliegenden Molekülbausteine vorhersagen.

Besseres Verständnis der Vorgänge im Inneren

An diesem Punkt setzt die Arbeit der Würzburger Forschergruppe an: Sie wird in den kommenden drei Jahren die Wechselwirkungen zwischen Licht und Materie in molekularen Aggregaten intensiv untersuchen. „Wenn man die fundamentalen Regeln der Wechselwirkungen beherrscht, sollte eine neue Generation von Materialien machbar sein, die über gegenwärtige hinausgehen“, so Brixner.

Die Würzburger Forschergruppe besitzt das für diese Forschung notwendige Wissen und die entsprechende Technik. Ihre Mitglieder stammen aus der theoretischen, physikalischen und organischen Chemie und aus der Experimentalphysik; sie verfügen über die notwendige Expertise für alle erforderlichen Untersuchungsmethoden und über die jeweiligen Geräte – angefangen bei der Spektroskopie bis zur Photoleitfähigkeitsmessung. Die Bündelung der vorhandenen experimentellen und theoretischen Ressourcen ermögliche eine „einzigartige kooperative Forschung im Bereich der Licht-Materie-Wechselwirkung“.

An der Forschergruppe beteiligt sind aus dem Bereich der Physikalischen und Theoretischen Chemie:

Prof. Dr. Tobias Brixner
Prof. Dr. Volker Engel
Prof. Dr. Bernd Engels

aus dem Bereich der Organischen Chemie:

Prof. Dr. Christoph Lambert
Prof. Dr. Frank Würthner
aus dem Bereich der Experimentalphysik:

Prof. Dr. Vladimir Dyakonov
PD Dr. Carsten Deibel
Prof. Dr. Jens Pflaum
sowie als assoziierte Nachwuchswissenschaftler:

Dr. Florian Beuerle
Dr. Gustavo Fernández
Dr. Patrick Nürnberger
Insgesamt hat die Deutsche Forschungsgemeinschaft (DFG) die Einrichtung von sechs neuen Forschergruppen und einer Klinischen Forschergruppe beschlossen. Die Forschungsverbünde sollen Wissenschaftlern die Möglichkeit bieten, sich „aktuellen und drängenden Fragen in ihren Fächern zu widmen und innovative Arbeitsrichtungen zu etablieren“, wie es in einer Pressemitteilung der DFG heißt. Aktuell fördert die Einrichtung 191 Forschergruppen.

Kontakt

Prof. Dr. Tobias Brixner, T: (0931) 31-86330,
E-Mail: brixner@phys-chemie.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Aggregat Baustein DFG Experimentalphysik Materie Molekül Photosynthese Physik Wechselwirkung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kampf dem Plastik mit Verpackungen aus Seetang
15.12.2017 | Australisch-Neuseeländischer Hochschulverbund / Institut Ranke-Heinemann

nachricht Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung
14.12.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik