Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige poröse Materialien schaffen vielfältige neue Möglichkeiten

09.07.2010
Die Eigenschaften von Materialien bestimmen ganz wesentlich Form und Funktion vieler Produkte. Neuartige Materialien wie bspw. die sogenannten MOF-Verbindungen bieten eine Vielzahl neuer Möglichkeiten.

Metal Organic Frameworks, MOFs, sind poröse Festkörper, die aus vielen, immer gleichen Grundbausteinen bestehen und baukastenähnlich sehr variabel zusammengesetzt werden können. Ihre relativ einfache Herstellung und vor allem ihre gigantisch großen „inneren“ Oberflächen von bis zu 5000 m2 pro Gramm machen MOFs für viele Anwendungen interessant: Sie eignen sich zum Beispiel als Gasreiniger für Brennstoffzellen - und machen so alternative Energiekonzepte für den Fahrzeugantrieb nutzbar.

Im Rahmen eines EU-Großprojektes beschäftigen sich Dresdner Forscher mit der Entwicklung und dem Test dieser neuen Materialien mit den faszinierenden Eigenschaften. Unter dem Titel „nanoMOF – Nanoporous Metal-Organic Frameworks for production“ arbeiten Mitarbeiter des Fraunhofer-Instituts für Werkstoff- und Strahltechnik IWS Dresden sowie der TU Dresden mit Partnern aus ganz Europa zusammen, um nanostrukturierte MOFs (engl. metal-organic frameworks) den Weg in industrielle Anwendungen zu ebenen. Das Konsortium besteht aus multinationalen und mittelständischen Unternehmen sowie Universitäten und Forschungsinstituten aus neun europäischen Ländern und einem assoziiertem Land.

Konkret beschäftigen sich die Forscher mit folgenden Fragestellungen:

Wie können Atemschutzfilter länger nutzbar gemacht werden?
Atemschutzfilter schützen vor gefährlichen Gasen bzw. Partikeln. Gemeinsam mit Ihren Partnern optimieren die Fraunhofer-Forscher bspw. die Filter in Atemschutzmasken, um eine höchst mögliche Blockfunktion sowie längere Standzeiten zu gewährleisten.
Wie können Brennstoffzellen länger halten?
Die heutzutage immer noch dominierende Energiebereitstellung anhand der Verbrennung fossiler Energieträger wird zunehmend von alternativen Technologien ergänzt. Die Brennstoffzellentechnologie steht dabei mit an vorderster Stelle. Die Lebensdauer der Brennstoffzelle und somit ihr Einsatzpotenzial wird maßgeblich von der Qualität der eingesetzten Gase bestimmt. Spezielle MOFs können die störenden Verunreinigungen binden und somit das Gas sehr effizient reinigen, was zu einer beträchtlichen Erhöhung der Brennstoffzellenlebensdauer führt.
Wie viel Erdgas passt maximal in einen Tank?
MOFs gelten als vielversprechende Materialien für eine sichere und effiziente Speicherung von Gasen. Dabei wird die verblüffende Eigenschaft ausgenutzt, dass eine mit einem porösen Material (bspw. MOFs) gefüllte Gasflasche ein Vielfaches an Gas speichern kann, als eine herkömmliche leere Druckgasflasche. Einsatzgebiete sind u. a. die Wasserstoff- oder Erdgasspeicherung für neuartige Automobilmotoren. Die Forscher wollen bei der Anwendung von MOFs als Gasspeichermedium noch einen weiteren interessanten Effekt ausnutzen: Wird das gespeicherte Gas wieder entnommen, bleiben die Gasverunreinigungen in den MOFs gefangen - das Nutzgas ist wesentlich reiner. Dieses vorteilhafte Verhalten soll für die Gasbereitstellung in Halbleiterfabriken ausgenutzt werden.
Wie können biologische Produkte effizient veredelt werden?
Ein wesentlicher Bestandteil des MOF-Gitters sind die jeweils genutzten Metalle. Eine große innere MOF-Oberfläche bedeutet somit auch eine große Metalloberfläche. Dass Metalle (bio)chemische Reaktionen unterstützen bzw. erst möglich machen, ist hinlänglich bekannt - diesen katalytischen Prozess jedoch mit nur wenigen Gramm MOF-Katalysator nutzbar zu machen, dass versuchen die Forscher in einer weiteren Arbeitsgruppe des EU-Projektes. Dabei steht die Umwandlung natürlicher Rohstoffe, z.B. tierischer und pflanzlicher Fette zur Herstellung von Nahrungsmittelzusätzen oder Hautcremes und –ölen im Zentrum des Interesses.

Die Dresdner Forscher können bereits nach dem ersten Jahr des europäischen Projektes hervorragende Ergebnisse vorweisen. Erste Muster, bei denen MOFs in Textilien eingelagert wurden, stehen zur Verfügung. Um die Wirkung der MOFs objektiv zu beurteilen, wurden neue Sensorkonzepte entwickelt. Sie können die relevanten Gase im Spurenbereich (also wenige Moleküle unter einer Million anderer Moleküle) sicher nachweisen.

Ihre Ansprechpartner für weitere Informationen:
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden
01277 Dresden, Winterbergstr. 28
Dr. Wulf Grählert
Telefon: (0351) 83391 3406
Telefax: (0351) 83391 3300
E-mail: wulf.graehlert@iws.fraunhofer.de
Öffentlichkeitsarbeit:
Dr. Ralf Jäckel
Telefon: (0351) 83391 3444
Telefax: (0351) 83391 3300
E-mail: ralf.jaeckel@iws.fraunhofer.de

Dr. Ralf Jaeckel | Fraunhofer
Weitere Informationen:
http://www.nanomof-project.eu
http://www.iws.fraunhofer.de
http://www.iws.fraunhofer.de/presse/presse.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie