Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Mikrokapseln entwickelt

27.08.2013
Materialwissenschaftlern aus Bremen und Stanford gelingt der Durchbruch bei der Miniaturisierung von Medikamentträgern.

Mehr als 1.000-mal kleiner als ein Sandkorn und über 20-mal dünner als ein menschliches Haar: So „klein“ sind die neuartigen Mikrokapseln mit dem interessanten Namen Colloidosome. Sie haben ein großes Potenzial, vorrangig medizinisch mit einer hoch exakten Dosierung für bestimmte Zellen verwendet zu werden.


Hochauflösende Elektronenmikroskop-Aufnahme einer Mikrokapsel.
"Uni Bremen / Advanced Ceramics"

Materialwissenschaftlern der Universitäten in Bremen und Stanford (USA) ist es jetzt gelungen, eine neue Generation von Mikrokapseln mit einem Durchmesser von 300 Nanometern zu entwickeln. Sie sind damit zehnmal kleiner als die bisher bekannten Colloidosome, die erstmals 2002 von Wissenschaftlern in Harvard hergestellt wurden. Damit eröffnen sich neue Wege im Kampf gegen Erkrankungen wie beispielsweise Krebs.

Die Mikrokapseln gleichen einem winzigen, mit Wasser gefüllten Ball, der lediglich aus einer Hülle von einzelnen Nanopartikeln besteht. Diese besondere Hülle ist es auch, die den Kapseln ihre neuartigen Eigenschaften verleihen. Durch kleine Löcher in der Hülle der Kapseln (Durchmesser 1-5 nm), die zwischen den Nanopartikeln der Hülle entstehen, können Moleküle wie z.B. Medikamente aus dem Inneren der Kapseln dosiert freigesetzt werden. Hieraus ergibt sich auch das Einsatzgebiet der Colloidosome, das vor allem in der Medizin liegt.

Tobias Bollhorst, wissenschaftlicher Mitarbeiter im Fachgebiet Keramische Werkstoffe und Bauteile (Advanced Ceramics) im Fachbereich Produktionstechnik der Universität Bremen, der sich im Rahmen seiner Promotion mit den potenziell vielseitig verwendbaren Kapseln beschäftigt, beschreibt ein mögliches Einsatzgebiet wie folgt: „Langfristiges Ziel ist es, ein Mittel zur Krebsbekämpfung in das Innere der Mikrokapseln einzulagern und die Medikamente dann im hohen Maße zur Tumorbekämpfung gezielt an bestimmten Stellen im menschlichen Körper freizusetzen. Die Effizienz von Krebstherapien könnte so enorm gesteigert werden.“ Bisherige Colloidosome waren jedoch zu groß, um effektiv im Körper eingesetzt werden zu können. Die Miniaturisierung der Kapseln ist somit ein entscheidender Durchbruch hin zur Anwendung als Wirkstoffträger.

Das Geheimnis der neuen Mikrokapseln: Lipide

Ein kürzlich in der international renommierten Fachzeitschrift „Chemistry of Materials“ veröffentlichter Artikel beschreibt detailliert sowohl das Herstellungsverfahren als auch die Eigenschaften der Mikrokapseln. Das Geheimnis des Erfolges, das die neuartigen Kapseln von ähnlichen Studien abgrenzt, liegt in der Verwendung von sogenannten Lipiden, also Fettsäuren, die die Kapseln stabilisieren. Fettsäuren befinden sich u. a. in Butter und sind für den menschlichen Organismus hervorragend verträglich. Diese Fettsäuren lagern sich bei der Herstellung der Kapseln zwischen den einzelnen Nanopartikeln an und führen so zu einem starken Zusammenhalt der Colloidosome.

Den Grundstein zur Herstellung der neuartigen Mikrokapseln legte der heute in Bremen tätige Gruppenleiter und Mitbetreuer der Promotion Michael Maas bereits vor zwei Jahren. Damals forschte Michael Maas in den Laboren von Co-Autor Gerald Fuller an der Stanford Universität an extrem dünnen Schichten aus den Nanopartikeln und den Fettsäuren, die jetzt in Bremen erfolgreich zur Herstellung der Kapseln eingesetzt werden. „Es ist großartig, Erkenntnisse aus der Grundlagenforschung nutzen zu können, um die Entwicklung von innovativen Wirkstoffträgern voranzubringen. Theoretisch können die unterschiedlichsten Arten von Nanopartikeln für die Herstellung von Colloidosomen eingesetzt werden. Dadurch haben wir ein Baukastensystem, welches fast beliebig angepasst und erweitert werden kann.“

Professor Kurosch Rezwan, Leiter des Fachgebiets an der Uni Bremen, hebt hervor: „Der Durchbruch ist fundamental und wir stehen noch ganz am Anfang. Aber es ist schon jetzt klar, dass diese neuartigen Mikrokapseln für viele Anwendungsfelder tolle Eigenschaften mitbringen. Es ist nun unser Ziel das bestehende System in den nächsten Jahren weiter stark zu optimieren und die Mikrokapseln langfristig vom Labormaßstab hin zum Einsatz in der industriellen Anwendung zu führen.“ Zudem betont Rezwan, dass ohne die enge Zusammenarbeit mit der von Professor Andreas Rosenauer geleiteten Arbeitsgruppe Elektronenmikroskopie und seinem wissenschaftlichen Mitarbeiter Tim Grieb die für die Publikation notwendigen, hochauflösenden elektronenmikroskopischen Aufnahmen nicht hätten erzielt werden können.

Vollständiger Titel des Fachartikels: Tobias Bollhorst, Tim Grieb, Andreas Rosenauer, Gerald Fuller, Michael Maas, Kurosch Rezwan: Synthesis Route for the Self-Assembly of Submicrometer-Sized Colloidosomes with Tailorable Nanopores, Chemistry of Materials, 2013, in print

http://pubs.acs.org/doi/abs/10.1021/cm401610a

Weitere Informationen:

Universität Bremen
Fachbereich Produktionstechnik
Keramische Werkstoffe und Bauteile / Advanced Ceramics
M.Sc. Tobias Bollhorst
Tel.: +49 421 218 64961
E-Mail: bollhorst@uni-bremen.de
Dr. rer. nat. Michael Maas
Tel.: +49 421 218 64939
E-Mail: michael.maas@uni-bremen.de
Prof. Dr.-Ing. Kurosch Rezwan
Tel.: +49 421 218 64930
E-Mail: krezwan@uni-bremen.de

Eberhard Scholz | idw
Weitere Informationen:
http://www.ceramics.uni-bremen.de
http://www.uni-bremen.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Quantenkommunikation: Wie man das Rauschen überlistet

29.03.2017 | Physik Astronomie

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE