Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige DLC-Oberflächen für verbesserte medizinische Implantate und weniger Revisionsoperationen

19.03.2015

DFG-Erkenntnistransferprojekt zur Optimierung intelligenter Endoprothesen auf der Basis diamantähnlicher Oberflächenmodifikationen

Einheilverhalten, Abrieb und Infektionsrisiko sind die Knackpunkte dauerhaft im Körper verbleibender Gelenkimplantate. Die maßgeblichen Implantateigenschaften durch Oberflächenmodifikationen entscheidend zu verbessern, ist das Ziel eines neuen, federführend an der Universität Augsburg und ihrem Anwenderzentrum für Material und Umweltforschung AMU angesiedelten Erkenntnistransferprojekts, das die Deutsche Forschungsgemeinschaft (DFG) jüngst genehmigt hat.


Hüftendoprothesen - hier Excia® T von Aesculap - sind eines der erfolgversprechenden Anwendungsgebiete für antimikrobielle DLC-Oberflächen.

© B. Braun Melsungen AG/Sparte Aesculap


Speziell für diesen Zweck in Augsburg entwickelte Mikrofluidik-Chips, mit denen das Anwachsverhalten von Knochenzellen charakterisiert werden kann, eröffnen eine Alternative zu Tierversuchen.

© Universität Augsburg/EP I

Projektpartner der Augsburger Biophysiker und Materialwissenschaftler sind Mediziner der TU München und der Universitätsmedizin Mannheim sowie die Aesculap AG, die als Sparte des B. Braun-Konzerns zu den führenden deutschen Herstellern medizinischer Implantate zählt.

Ausgangspunkt des neuen medizintechnologischen Transferprojekts, mit dem die DFG die bisherigen Erfolge einer engen Zusammenarbeit der Augsburger Materialwissenschaft und Biophysik mit Kollegen aus der medizinischen Forschung und Anwendung honoriert, sind die Ergebnisse ebenfalls DFG-geförderter Grundlagenforschungen, bei denen es der Arbeitsgruppe von Prof. Dr. Bernd Stritzker am Augsburger Lehrstuhl für Experimentalphysik IV gelungen war, durch Einlagerung von Silber-Nanopartikeln in diamantähnlichen Kohlenstoff eine antibakterielle Oberflächenmodifikation für medizinische Implantate zu entwickeln.

Antimikrobiell und biokompatibel

Biologische Untersuchungen am Klinikum rechts der Isar der TU München (PD Dr. med. Burgkart und Prof. Dr.med. Gollwitzer, Orthopädie und Sportorthopädie) sowie am Universitätsklinikum Mannheim (Prof. Dr. med. Stefan Schneider, Experimentelle Dermatologie) zeigten für klinisch relevante schädliche Keime eine deutlich wachstumshemmende antimikrobielle Wirkung der in der Augsburger Physik entwickelten DLC-Modifikation, die sich darüber hinaus durch eine weitere entscheidende Eigenschaft auszeichnet:

Wenige Stunden nach der Hüft- oder Kniegelenksoperation verliert die DLC-Oberfläche ihre während des Eingriffs enorm wichtige antibakterielle Wirkung und sorgt so für eine hervorragende Biokompatibilität des Implantats. Mit Blick auf die klinische Anwendung ist dieses Verhalten der Oberfläche ideal, da es in den kritischen Phasen während des operativen Eingriffs und unmittelbar danach Infektionen verhindert, das Einheilverhalten des Implantats anschließend aber in keiner Weise mehr beeinträchtigt.

Auf bewährte Implantat-Polymere übertragbar

Zwei weitere Vorteile kommen hinzu: Zum einen kann diese antimikrobiell wirksame Oberflächenmodifikation durch Ionenbestrahlung auf bewährte Implantat-Polymere übertragen werden, zum anderen können Tierversuche ersetzt werden, denn im Rahmen des Projekts werden die neuartigen Implantatoberflächen hinsichtlich des Anwachsverhaltens von Knochenzellen auf daumennagelgroßen Mikrofluidik-Chipsystemen charakterisiert., die speziell für diesen Zweck am Augsburger Experimentalphysik-Lehrstuhl I von Prof. Dr. Achim Wixforth entwickelt wurden.

„Jetzt geht es darum, die Erkenntnisse, die wir gewonnen haben, in der Praxis zu testen und auf Basis der Ergebnisse unserer Grundlagenforschung gemeinsam mit dem Anwendungspartner Aesculap AG im Erfolgsfall eine Endoprothese als Prototyp zu entwickeln“, erläutert Wixforth. Er hat die Projektleitung von seinem Kollegen Stritzker übernommen, der mittlerweile in Ruhestand getreten ist, das Projekt aber weiterhin wie bereits bei der Antragstellung mit Rat und Tat begleitet.

Optimierung unter realen Bedingungen

In Zusammenarbeit mit der Aesculap AG - Projektverantwortliche sind dort Dipl.-Ing. Melanie Holderied, T&D Biomechanics und PD Dr. med. habil. Dr.-Ing. Thomas Grupp, Director R&D - sollen die neuen Implantatoberflächen nun unter realen Bedingungen optimiert werden. „Wenn uns, wovon wir ausgehen, eine vollständige antimikrobielle Ausrüstung eines kompletten Implantats gelingen sollte, wird dies ein enormer, auf diesem Gebiet so noch nie dagewesener Fortschritt sein“, betont Stritzker. Denn ein verbessertes Einheilverhalten und ein reduzierter Abrieb bei künstlichen Gelenken, insbesondere aber auch eine verminderte Infektionsrate seien entscheidende Faktoren, mit denen sich eine deutlich längere Funktionsdauer der Implantate erreichen und die Zahl der Revisionsoperationen an betroffenen Patienten erheblich reduzieren lasse.

Insgesamt knapp 1,5 Millionen Euro

Die DFG fördert das medizinisch-physikalische Erkenntnistransferprojekt mit insgesamt gut 950.000 Euro, von denen rund 40 Prozent an die Arbeitsgruppen im Physik-Institut der Universität Augsburg gehen. Die Aesculap AG beteiligt sich ihrerseits mit Personal- und Sachmitteln in Höhe von weiteren ca. 520.000 Euro. Eine detaillierte Abstimmung der Forschungs- und Entwicklungsarbeiten sowie der zeitlichen Projektkoordination erfolgte bei einem Kick-Off-Meeting aller Projektpartner Ende Februar 2015 im Anwenderzentrum für Material- und Umweltforschung (AMU) der Universität Augsburg.

„Wir freuen uns“, so Stritzker, „dass es uns im AMU ein weiteres Mal gelungen ist, mit den Erkenntnissen aus einem erfolgreich abgeschlossenen DFG-Grundlagenprojekt eine renommierte Industriefirma so zu überzeugen und so stark zu interessieren, dass sie nun im Rahmen eines DFG-Erkenntnistransferprojekts unsere Forschung mit eigenen Geldern und Mitarbeitern synergetisch unterstützt.“


Ansprechpartner an der Universität Augsburg:

Prof. Dr. Achim Wixforth und Dr. Christoph Westerhausen
Lehrstuhl Experimentalphysik I
Telefon 0821/598-3300
achim.wixforth@physik.uni-augsburg.de
christoph.westerhausen@physik.uni-augsburg.de

Prof. Dr. Bernd Stritzker
Anwenderzentrum Material- und Umweltforschung (AMU)
Telefon 0821/598-3590
bernd.stritzker@physik.uni-augsburg.de

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-augsburg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Stahl ist nicht gleich Stahl: Informatiker und Materialforscher optimieren Werkstoffklassifizierung
19.02.2018 | Universität des Saarlandes

nachricht Wenn Eiweiße einander die Hand geben
19.02.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zukunft wird gedruckt

19.02.2018 | Architektur Bauwesen

Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress

19.02.2018 | Messenachrichten

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics