Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Natur als Vorbild: Bayreuther Forschungen zu Seidenproteinen im Ausstellungszug "Expedition Zukunft"

09.09.2009
Die Materialforschung interessiert sich zunehmend für die Eigenschaften und Strukturen von Materialien in der Tier- und Pflanzenwelt.

Diese Biomaterialien können technischen Materialien in mancher Hinsicht überlegen sein. Ein Beispiel sind Strukturproteine der Seide, die von Insekten oder Spinnen produziert werden.

Der Lehrstuhl für Biomaterialien der Universität Bayreuth unter der Leitung von Professor Dr. Thomas Scheibel befasst sich mit der künstlichen Herstellung dieser Proteine und erforscht deren innovative Umsetzung in neue Produkte. Die Forschungsarbeiten sind derzeit im Ausstellungszug "Expedition Zukunft" des Wissenschaftsjahrs 2009 zu besichtigen.

Die Materialforschung interessiert sich zunehmend für die Eigenschaften und Strukturen von Materialien in der Tier- und Pflanzenwelt. Diese Biomaterialien können technischen Materialien in mancher Hinsicht überlegen sein. Ein Beispiel dafür sind Strukturproteine der Seide, die von Insekten oder Spinnen produziert werden. Der Lehrstuhl für Biomaterialien der Universität Bayreuth unter der Leitung von Professor Dr. Thomas Scheibel befasst sich mit der künstlichen Herstellung dieser Proteine und erforscht deren innovative Umsetzung in Produkte unterschiedlicher Industriezweige.

Im Wissenschaftsjahr 2009 präsentiert das Team um Professor Scheibel seine Forschungsarbeiten im Ausstellungszug "Expedition Zukunft", der in mehr als 60 Städten in Deutschland Station macht, um über neue Entwicklungen in der Forschung zu informieren. Vom 24. bis 26. September 2009 ist der Zug, der aus insgesamt 12 Waggons mit themenspezifischen Ausstellungen besteht, im Bayreuther Hauptbahnhof zu besichtigen.

Spinnenseide - ein Biomaterial mit einzigartigen Qualitäten

Die weltweit rund 38.000 bekannten Spinnenarten produzieren Seidenfäden für eine Vielzahl von Anwendungen - insbesondere für Spinnennetze, in denen sie ihre Beute fangen, aber auch für Kokons und Klebstoffe. In allen Fällen sind die Seidenfäden extrem dünn. Ihr Durchmesser beträgt nur wenige Tausendstel Millimeter, nämlich 1 bis 5 Mikrometer. Dennoch zeichnen sich die Seidenfäden durch eine außergewöhnliche Reißfestigkeit aus: Sie sind sehr stabil und gleichzeitig extrem dehnbar.

Seidenproteine aus gentechnischer Herstellung

Wegen dieses Eigenschaftsprofils ist es attraktiv, Spinnenseide in großen Mengen möglichst kostengünstig herzustellen und für die Entwicklung neuer Produkte einzusetzen. Das Team um Professor Scheibel hat daher die künstliche Herstellung von Spinnenseiden untersucht und verschiedenartige Verfahren erprobt. Ausgangspunkt ist die biotechnische Produktion der Proteine, aus denen sich die Seidenfäden zusammensetzen. In einem ersten Schritt wird die innere Struktur der Proteine untersucht und mit Computeranalysen ausgewertet. Die so gewonnenen Informationen werden anschließend in genetische Informationen übersetzt; d.h. es wird ermittelt, wie die Gene beschaffen sind, die im Organismus der Spinne die Herstellung der Proteine steuern. Diese Gene der Spinne werden anschließend künstlich hergestellt und in lebende Organismen eingepflanzt. Als derartige Wirtsorganismen eignen sich insbesondere Bakterien des Darmbakteriums E.coli, die sich mit herkömmlichen Fermentationsprozessen in großen Mengen vermehren lassen.

Die Spinnengene können allerdings nicht unverändert in die Bakterien "eingeschleust" werden. Denn Spinnen sind hochentwickelte Gliedertiere, Bakterien sind hingegen primitive Mikroorganismen und können mit den für Spinnen charakteristischen Formen der Proteinproduktion nicht umgehen. Den Bayreuther Forschern ist es dennoch gelungen, die für die Produktion von Seidenproteinen zuständigen Gene der Spinne so zu modifizieren, dass sie sich in die Erbinformation der Bakterien einbauen lassen. Die auf diese Weise gentechnisch veränderten Bakterien stellen dann in Fermentern die gewünschten Seidenproteine her. Die Proteine werden anschließend aus den Zellen der Bakterien isoliert sowie von Zelltrümmern und bakteriellen Proteinen gereinigt. Nach einer Gefriertrocknung liegen sie als Pulver vor. In der Forschung hat sich für Proteine, die in fremden, gentechnisch veränderten Organismen erzeugt werden, der Fachbegriff "rekombinante Proteine" etabliert.

Von der Textilindustrie bis zur Medizintechnik: Neue industrielle Anwendungen

Die in Pulverform vorliegenden Seidenproteine sind das Ausgangsmaterial für industrielle Anwendungen, die derzeit intensiv erforscht werden. Mit Elektrospinnverfahren lassen sich die Seidenproteine in fadenförmige Makromoleküle - sogenannte Fibrillen - überführen, die ihrerseits zu Vliesstoffen weiterverarbeitet werden können. Diese Vliesstoffe kommen beispielsweise in Anlagen zur Staubfilterung und Luftreinhaltung zur Anwendung. Des Weiteren können durch Gieß- oder Sprühverfahren extrem dünne und zugleich kristallklare Folien hergestellt werden, die sehr widerstandsfähig sind; im Vergleich mit herkömmlichen Folien aus Kunststoff zeichnen sie sich durch eine wesentlich bessere Luft- und Wasserdurchlässigkeit aus. Zudem lassen sich die Seidenproteine auch zu extrem dünnen Filmen weiterverarbeiten, die als Oberflächenbeschichtungen oder als Verpackungsmaterial zum Einsatz kommen. Für die pharmazeutische Industrie wiederum sind Kapseln aus Seidenproteinen interessant, in denen medizinische Wirkstoffe eingeschlossen werden können. Eine vielversprechende Anwendung zeichnet sich derzeit in der Medizintechnik ab: Wenn im peripheren Nervensystem ein Nervenstrang beschädigt ist, können spezielle Fasern aus Spinnenseidenproteinen die Regeneration des Nervengewebes wirksam unterstützen.

Kontaktadressen für weitere Informationen:

Lehrstuhl für Biomaterialien
Fakultät für Angewandte Naturwissenschaften
Universität Bayreuth
Professor Dr. Thomas Scheibel (Leitung)
Telefon: +49 (0)921 / 55-7360 und 55-7361
E-Mail: thomas.scheibel@bm.uni-bayreuth.de
Akad. Rat Dr. Hendrik Bargel (Wiss. Mitarbeiter)
Telefon: +49 (0)921 / 55-7347
E-Mail: hendrik.bargel@bm.uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.fiberlab.de
http://expedition-zukunft.org

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie