Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Natur als Vorbild: Bayreuther Forschungen zu Seidenproteinen im Ausstellungszug "Expedition Zukunft"

09.09.2009
Die Materialforschung interessiert sich zunehmend für die Eigenschaften und Strukturen von Materialien in der Tier- und Pflanzenwelt.

Diese Biomaterialien können technischen Materialien in mancher Hinsicht überlegen sein. Ein Beispiel sind Strukturproteine der Seide, die von Insekten oder Spinnen produziert werden.

Der Lehrstuhl für Biomaterialien der Universität Bayreuth unter der Leitung von Professor Dr. Thomas Scheibel befasst sich mit der künstlichen Herstellung dieser Proteine und erforscht deren innovative Umsetzung in neue Produkte. Die Forschungsarbeiten sind derzeit im Ausstellungszug "Expedition Zukunft" des Wissenschaftsjahrs 2009 zu besichtigen.

Die Materialforschung interessiert sich zunehmend für die Eigenschaften und Strukturen von Materialien in der Tier- und Pflanzenwelt. Diese Biomaterialien können technischen Materialien in mancher Hinsicht überlegen sein. Ein Beispiel dafür sind Strukturproteine der Seide, die von Insekten oder Spinnen produziert werden. Der Lehrstuhl für Biomaterialien der Universität Bayreuth unter der Leitung von Professor Dr. Thomas Scheibel befasst sich mit der künstlichen Herstellung dieser Proteine und erforscht deren innovative Umsetzung in Produkte unterschiedlicher Industriezweige.

Im Wissenschaftsjahr 2009 präsentiert das Team um Professor Scheibel seine Forschungsarbeiten im Ausstellungszug "Expedition Zukunft", der in mehr als 60 Städten in Deutschland Station macht, um über neue Entwicklungen in der Forschung zu informieren. Vom 24. bis 26. September 2009 ist der Zug, der aus insgesamt 12 Waggons mit themenspezifischen Ausstellungen besteht, im Bayreuther Hauptbahnhof zu besichtigen.

Spinnenseide - ein Biomaterial mit einzigartigen Qualitäten

Die weltweit rund 38.000 bekannten Spinnenarten produzieren Seidenfäden für eine Vielzahl von Anwendungen - insbesondere für Spinnennetze, in denen sie ihre Beute fangen, aber auch für Kokons und Klebstoffe. In allen Fällen sind die Seidenfäden extrem dünn. Ihr Durchmesser beträgt nur wenige Tausendstel Millimeter, nämlich 1 bis 5 Mikrometer. Dennoch zeichnen sich die Seidenfäden durch eine außergewöhnliche Reißfestigkeit aus: Sie sind sehr stabil und gleichzeitig extrem dehnbar.

Seidenproteine aus gentechnischer Herstellung

Wegen dieses Eigenschaftsprofils ist es attraktiv, Spinnenseide in großen Mengen möglichst kostengünstig herzustellen und für die Entwicklung neuer Produkte einzusetzen. Das Team um Professor Scheibel hat daher die künstliche Herstellung von Spinnenseiden untersucht und verschiedenartige Verfahren erprobt. Ausgangspunkt ist die biotechnische Produktion der Proteine, aus denen sich die Seidenfäden zusammensetzen. In einem ersten Schritt wird die innere Struktur der Proteine untersucht und mit Computeranalysen ausgewertet. Die so gewonnenen Informationen werden anschließend in genetische Informationen übersetzt; d.h. es wird ermittelt, wie die Gene beschaffen sind, die im Organismus der Spinne die Herstellung der Proteine steuern. Diese Gene der Spinne werden anschließend künstlich hergestellt und in lebende Organismen eingepflanzt. Als derartige Wirtsorganismen eignen sich insbesondere Bakterien des Darmbakteriums E.coli, die sich mit herkömmlichen Fermentationsprozessen in großen Mengen vermehren lassen.

Die Spinnengene können allerdings nicht unverändert in die Bakterien "eingeschleust" werden. Denn Spinnen sind hochentwickelte Gliedertiere, Bakterien sind hingegen primitive Mikroorganismen und können mit den für Spinnen charakteristischen Formen der Proteinproduktion nicht umgehen. Den Bayreuther Forschern ist es dennoch gelungen, die für die Produktion von Seidenproteinen zuständigen Gene der Spinne so zu modifizieren, dass sie sich in die Erbinformation der Bakterien einbauen lassen. Die auf diese Weise gentechnisch veränderten Bakterien stellen dann in Fermentern die gewünschten Seidenproteine her. Die Proteine werden anschließend aus den Zellen der Bakterien isoliert sowie von Zelltrümmern und bakteriellen Proteinen gereinigt. Nach einer Gefriertrocknung liegen sie als Pulver vor. In der Forschung hat sich für Proteine, die in fremden, gentechnisch veränderten Organismen erzeugt werden, der Fachbegriff "rekombinante Proteine" etabliert.

Von der Textilindustrie bis zur Medizintechnik: Neue industrielle Anwendungen

Die in Pulverform vorliegenden Seidenproteine sind das Ausgangsmaterial für industrielle Anwendungen, die derzeit intensiv erforscht werden. Mit Elektrospinnverfahren lassen sich die Seidenproteine in fadenförmige Makromoleküle - sogenannte Fibrillen - überführen, die ihrerseits zu Vliesstoffen weiterverarbeitet werden können. Diese Vliesstoffe kommen beispielsweise in Anlagen zur Staubfilterung und Luftreinhaltung zur Anwendung. Des Weiteren können durch Gieß- oder Sprühverfahren extrem dünne und zugleich kristallklare Folien hergestellt werden, die sehr widerstandsfähig sind; im Vergleich mit herkömmlichen Folien aus Kunststoff zeichnen sie sich durch eine wesentlich bessere Luft- und Wasserdurchlässigkeit aus. Zudem lassen sich die Seidenproteine auch zu extrem dünnen Filmen weiterverarbeiten, die als Oberflächenbeschichtungen oder als Verpackungsmaterial zum Einsatz kommen. Für die pharmazeutische Industrie wiederum sind Kapseln aus Seidenproteinen interessant, in denen medizinische Wirkstoffe eingeschlossen werden können. Eine vielversprechende Anwendung zeichnet sich derzeit in der Medizintechnik ab: Wenn im peripheren Nervensystem ein Nervenstrang beschädigt ist, können spezielle Fasern aus Spinnenseidenproteinen die Regeneration des Nervengewebes wirksam unterstützen.

Kontaktadressen für weitere Informationen:

Lehrstuhl für Biomaterialien
Fakultät für Angewandte Naturwissenschaften
Universität Bayreuth
Professor Dr. Thomas Scheibel (Leitung)
Telefon: +49 (0)921 / 55-7360 und 55-7361
E-Mail: thomas.scheibel@bm.uni-bayreuth.de
Akad. Rat Dr. Hendrik Bargel (Wiss. Mitarbeiter)
Telefon: +49 (0)921 / 55-7347
E-Mail: hendrik.bargel@bm.uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.fiberlab.de
http://expedition-zukunft.org

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie