Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Natur als Vorbild: Bayreuther Forschungen zu Seidenproteinen im Ausstellungszug "Expedition Zukunft"

09.09.2009
Die Materialforschung interessiert sich zunehmend für die Eigenschaften und Strukturen von Materialien in der Tier- und Pflanzenwelt.

Diese Biomaterialien können technischen Materialien in mancher Hinsicht überlegen sein. Ein Beispiel sind Strukturproteine der Seide, die von Insekten oder Spinnen produziert werden.

Der Lehrstuhl für Biomaterialien der Universität Bayreuth unter der Leitung von Professor Dr. Thomas Scheibel befasst sich mit der künstlichen Herstellung dieser Proteine und erforscht deren innovative Umsetzung in neue Produkte. Die Forschungsarbeiten sind derzeit im Ausstellungszug "Expedition Zukunft" des Wissenschaftsjahrs 2009 zu besichtigen.

Die Materialforschung interessiert sich zunehmend für die Eigenschaften und Strukturen von Materialien in der Tier- und Pflanzenwelt. Diese Biomaterialien können technischen Materialien in mancher Hinsicht überlegen sein. Ein Beispiel dafür sind Strukturproteine der Seide, die von Insekten oder Spinnen produziert werden. Der Lehrstuhl für Biomaterialien der Universität Bayreuth unter der Leitung von Professor Dr. Thomas Scheibel befasst sich mit der künstlichen Herstellung dieser Proteine und erforscht deren innovative Umsetzung in Produkte unterschiedlicher Industriezweige.

Im Wissenschaftsjahr 2009 präsentiert das Team um Professor Scheibel seine Forschungsarbeiten im Ausstellungszug "Expedition Zukunft", der in mehr als 60 Städten in Deutschland Station macht, um über neue Entwicklungen in der Forschung zu informieren. Vom 24. bis 26. September 2009 ist der Zug, der aus insgesamt 12 Waggons mit themenspezifischen Ausstellungen besteht, im Bayreuther Hauptbahnhof zu besichtigen.

Spinnenseide - ein Biomaterial mit einzigartigen Qualitäten

Die weltweit rund 38.000 bekannten Spinnenarten produzieren Seidenfäden für eine Vielzahl von Anwendungen - insbesondere für Spinnennetze, in denen sie ihre Beute fangen, aber auch für Kokons und Klebstoffe. In allen Fällen sind die Seidenfäden extrem dünn. Ihr Durchmesser beträgt nur wenige Tausendstel Millimeter, nämlich 1 bis 5 Mikrometer. Dennoch zeichnen sich die Seidenfäden durch eine außergewöhnliche Reißfestigkeit aus: Sie sind sehr stabil und gleichzeitig extrem dehnbar.

Seidenproteine aus gentechnischer Herstellung

Wegen dieses Eigenschaftsprofils ist es attraktiv, Spinnenseide in großen Mengen möglichst kostengünstig herzustellen und für die Entwicklung neuer Produkte einzusetzen. Das Team um Professor Scheibel hat daher die künstliche Herstellung von Spinnenseiden untersucht und verschiedenartige Verfahren erprobt. Ausgangspunkt ist die biotechnische Produktion der Proteine, aus denen sich die Seidenfäden zusammensetzen. In einem ersten Schritt wird die innere Struktur der Proteine untersucht und mit Computeranalysen ausgewertet. Die so gewonnenen Informationen werden anschließend in genetische Informationen übersetzt; d.h. es wird ermittelt, wie die Gene beschaffen sind, die im Organismus der Spinne die Herstellung der Proteine steuern. Diese Gene der Spinne werden anschließend künstlich hergestellt und in lebende Organismen eingepflanzt. Als derartige Wirtsorganismen eignen sich insbesondere Bakterien des Darmbakteriums E.coli, die sich mit herkömmlichen Fermentationsprozessen in großen Mengen vermehren lassen.

Die Spinnengene können allerdings nicht unverändert in die Bakterien "eingeschleust" werden. Denn Spinnen sind hochentwickelte Gliedertiere, Bakterien sind hingegen primitive Mikroorganismen und können mit den für Spinnen charakteristischen Formen der Proteinproduktion nicht umgehen. Den Bayreuther Forschern ist es dennoch gelungen, die für die Produktion von Seidenproteinen zuständigen Gene der Spinne so zu modifizieren, dass sie sich in die Erbinformation der Bakterien einbauen lassen. Die auf diese Weise gentechnisch veränderten Bakterien stellen dann in Fermentern die gewünschten Seidenproteine her. Die Proteine werden anschließend aus den Zellen der Bakterien isoliert sowie von Zelltrümmern und bakteriellen Proteinen gereinigt. Nach einer Gefriertrocknung liegen sie als Pulver vor. In der Forschung hat sich für Proteine, die in fremden, gentechnisch veränderten Organismen erzeugt werden, der Fachbegriff "rekombinante Proteine" etabliert.

Von der Textilindustrie bis zur Medizintechnik: Neue industrielle Anwendungen

Die in Pulverform vorliegenden Seidenproteine sind das Ausgangsmaterial für industrielle Anwendungen, die derzeit intensiv erforscht werden. Mit Elektrospinnverfahren lassen sich die Seidenproteine in fadenförmige Makromoleküle - sogenannte Fibrillen - überführen, die ihrerseits zu Vliesstoffen weiterverarbeitet werden können. Diese Vliesstoffe kommen beispielsweise in Anlagen zur Staubfilterung und Luftreinhaltung zur Anwendung. Des Weiteren können durch Gieß- oder Sprühverfahren extrem dünne und zugleich kristallklare Folien hergestellt werden, die sehr widerstandsfähig sind; im Vergleich mit herkömmlichen Folien aus Kunststoff zeichnen sie sich durch eine wesentlich bessere Luft- und Wasserdurchlässigkeit aus. Zudem lassen sich die Seidenproteine auch zu extrem dünnen Filmen weiterverarbeiten, die als Oberflächenbeschichtungen oder als Verpackungsmaterial zum Einsatz kommen. Für die pharmazeutische Industrie wiederum sind Kapseln aus Seidenproteinen interessant, in denen medizinische Wirkstoffe eingeschlossen werden können. Eine vielversprechende Anwendung zeichnet sich derzeit in der Medizintechnik ab: Wenn im peripheren Nervensystem ein Nervenstrang beschädigt ist, können spezielle Fasern aus Spinnenseidenproteinen die Regeneration des Nervengewebes wirksam unterstützen.

Kontaktadressen für weitere Informationen:

Lehrstuhl für Biomaterialien
Fakultät für Angewandte Naturwissenschaften
Universität Bayreuth
Professor Dr. Thomas Scheibel (Leitung)
Telefon: +49 (0)921 / 55-7360 und 55-7361
E-Mail: thomas.scheibel@bm.uni-bayreuth.de
Akad. Rat Dr. Hendrik Bargel (Wiss. Mitarbeiter)
Telefon: +49 (0)921 / 55-7347
E-Mail: hendrik.bargel@bm.uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.fiberlab.de
http://expedition-zukunft.org

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics