Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Natur als Vorbild: Bayreuther Forschungen zu Seidenproteinen im Ausstellungszug "Expedition Zukunft"

09.09.2009
Die Materialforschung interessiert sich zunehmend für die Eigenschaften und Strukturen von Materialien in der Tier- und Pflanzenwelt.

Diese Biomaterialien können technischen Materialien in mancher Hinsicht überlegen sein. Ein Beispiel sind Strukturproteine der Seide, die von Insekten oder Spinnen produziert werden.

Der Lehrstuhl für Biomaterialien der Universität Bayreuth unter der Leitung von Professor Dr. Thomas Scheibel befasst sich mit der künstlichen Herstellung dieser Proteine und erforscht deren innovative Umsetzung in neue Produkte. Die Forschungsarbeiten sind derzeit im Ausstellungszug "Expedition Zukunft" des Wissenschaftsjahrs 2009 zu besichtigen.

Die Materialforschung interessiert sich zunehmend für die Eigenschaften und Strukturen von Materialien in der Tier- und Pflanzenwelt. Diese Biomaterialien können technischen Materialien in mancher Hinsicht überlegen sein. Ein Beispiel dafür sind Strukturproteine der Seide, die von Insekten oder Spinnen produziert werden. Der Lehrstuhl für Biomaterialien der Universität Bayreuth unter der Leitung von Professor Dr. Thomas Scheibel befasst sich mit der künstlichen Herstellung dieser Proteine und erforscht deren innovative Umsetzung in Produkte unterschiedlicher Industriezweige.

Im Wissenschaftsjahr 2009 präsentiert das Team um Professor Scheibel seine Forschungsarbeiten im Ausstellungszug "Expedition Zukunft", der in mehr als 60 Städten in Deutschland Station macht, um über neue Entwicklungen in der Forschung zu informieren. Vom 24. bis 26. September 2009 ist der Zug, der aus insgesamt 12 Waggons mit themenspezifischen Ausstellungen besteht, im Bayreuther Hauptbahnhof zu besichtigen.

Spinnenseide - ein Biomaterial mit einzigartigen Qualitäten

Die weltweit rund 38.000 bekannten Spinnenarten produzieren Seidenfäden für eine Vielzahl von Anwendungen - insbesondere für Spinnennetze, in denen sie ihre Beute fangen, aber auch für Kokons und Klebstoffe. In allen Fällen sind die Seidenfäden extrem dünn. Ihr Durchmesser beträgt nur wenige Tausendstel Millimeter, nämlich 1 bis 5 Mikrometer. Dennoch zeichnen sich die Seidenfäden durch eine außergewöhnliche Reißfestigkeit aus: Sie sind sehr stabil und gleichzeitig extrem dehnbar.

Seidenproteine aus gentechnischer Herstellung

Wegen dieses Eigenschaftsprofils ist es attraktiv, Spinnenseide in großen Mengen möglichst kostengünstig herzustellen und für die Entwicklung neuer Produkte einzusetzen. Das Team um Professor Scheibel hat daher die künstliche Herstellung von Spinnenseiden untersucht und verschiedenartige Verfahren erprobt. Ausgangspunkt ist die biotechnische Produktion der Proteine, aus denen sich die Seidenfäden zusammensetzen. In einem ersten Schritt wird die innere Struktur der Proteine untersucht und mit Computeranalysen ausgewertet. Die so gewonnenen Informationen werden anschließend in genetische Informationen übersetzt; d.h. es wird ermittelt, wie die Gene beschaffen sind, die im Organismus der Spinne die Herstellung der Proteine steuern. Diese Gene der Spinne werden anschließend künstlich hergestellt und in lebende Organismen eingepflanzt. Als derartige Wirtsorganismen eignen sich insbesondere Bakterien des Darmbakteriums E.coli, die sich mit herkömmlichen Fermentationsprozessen in großen Mengen vermehren lassen.

Die Spinnengene können allerdings nicht unverändert in die Bakterien "eingeschleust" werden. Denn Spinnen sind hochentwickelte Gliedertiere, Bakterien sind hingegen primitive Mikroorganismen und können mit den für Spinnen charakteristischen Formen der Proteinproduktion nicht umgehen. Den Bayreuther Forschern ist es dennoch gelungen, die für die Produktion von Seidenproteinen zuständigen Gene der Spinne so zu modifizieren, dass sie sich in die Erbinformation der Bakterien einbauen lassen. Die auf diese Weise gentechnisch veränderten Bakterien stellen dann in Fermentern die gewünschten Seidenproteine her. Die Proteine werden anschließend aus den Zellen der Bakterien isoliert sowie von Zelltrümmern und bakteriellen Proteinen gereinigt. Nach einer Gefriertrocknung liegen sie als Pulver vor. In der Forschung hat sich für Proteine, die in fremden, gentechnisch veränderten Organismen erzeugt werden, der Fachbegriff "rekombinante Proteine" etabliert.

Von der Textilindustrie bis zur Medizintechnik: Neue industrielle Anwendungen

Die in Pulverform vorliegenden Seidenproteine sind das Ausgangsmaterial für industrielle Anwendungen, die derzeit intensiv erforscht werden. Mit Elektrospinnverfahren lassen sich die Seidenproteine in fadenförmige Makromoleküle - sogenannte Fibrillen - überführen, die ihrerseits zu Vliesstoffen weiterverarbeitet werden können. Diese Vliesstoffe kommen beispielsweise in Anlagen zur Staubfilterung und Luftreinhaltung zur Anwendung. Des Weiteren können durch Gieß- oder Sprühverfahren extrem dünne und zugleich kristallklare Folien hergestellt werden, die sehr widerstandsfähig sind; im Vergleich mit herkömmlichen Folien aus Kunststoff zeichnen sie sich durch eine wesentlich bessere Luft- und Wasserdurchlässigkeit aus. Zudem lassen sich die Seidenproteine auch zu extrem dünnen Filmen weiterverarbeiten, die als Oberflächenbeschichtungen oder als Verpackungsmaterial zum Einsatz kommen. Für die pharmazeutische Industrie wiederum sind Kapseln aus Seidenproteinen interessant, in denen medizinische Wirkstoffe eingeschlossen werden können. Eine vielversprechende Anwendung zeichnet sich derzeit in der Medizintechnik ab: Wenn im peripheren Nervensystem ein Nervenstrang beschädigt ist, können spezielle Fasern aus Spinnenseidenproteinen die Regeneration des Nervengewebes wirksam unterstützen.

Kontaktadressen für weitere Informationen:

Lehrstuhl für Biomaterialien
Fakultät für Angewandte Naturwissenschaften
Universität Bayreuth
Professor Dr. Thomas Scheibel (Leitung)
Telefon: +49 (0)921 / 55-7360 und 55-7361
E-Mail: thomas.scheibel@bm.uni-bayreuth.de
Akad. Rat Dr. Hendrik Bargel (Wiss. Mitarbeiter)
Telefon: +49 (0)921 / 55-7347
E-Mail: hendrik.bargel@bm.uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.fiberlab.de
http://expedition-zukunft.org

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

nachricht Stahl ist nicht gleich Stahl: Informatiker und Materialforscher optimieren Werkstoffklassifizierung
19.02.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics