Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Natürlich kleben

01.06.2012
Klebstoffe werden bislang meist auf Erdölbasis hergestellt. Doch sie lassen sich auch aus nachwachsenden Rohstoffen gewinnen – etwa aus Proteinen, Naturkautschuk, Stärke oder Cellulose. Fraunhofer-Forscher arbeiten an neuen Rezepturen für industrielle Anwendungen.

Schuhe, Autos, Flugzeuge, Rotorblätter von Windkraftanlagen, Haftnotizzettel oder Pflaster – Klebstoff ist in vielen Produkten im Einsatz. Mehr als 820 000 Tonnen des Werkstoffs wurden 2010 in Deutschland produziert, so der Industrieverband Klebstoffe.


Dieser Klebstoff basiert auf dem nachwachsenden Rohstoff Polymilchsäure. © Heike Holthausen, Westfälische Hochschule, Standort Recklinghausen

Bisher wird ein Großteil der Klebstoffe immer noch auf Erdölbasis hergestellt. Erst langsam bietet die Industrie auch Klebstoffe aus nachwachsenden Rohstoffen wie Stärke, Cellulose, Dextrinen und Proteinen an. Erste Produkte sind zum Beispiel Tapetenkleister und Klebstifte.

Haften mit Polymilchsäure

Forscher des Fraunhofer-Instituts für Umwelt-, Sicherheits- und Energietechnik UMSICHT arbeiten in zwei Projekten an weiteren neuen Klebstoffrezepturen auf Basis von nachwachsenden Rohstoffen. Gemeinsam mit der Westfälischen Hochschule, Standort Recklinghausen und den Unternehmen Jowat, Logo tape und Novamelt entwickeln die Oberhausener Forscher einen Haftklebstoff für industrielle Anwendungen. Das Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz fördert das Forschungsvorhaben.

Haftklebstoffe sind unter anderem in Heftpflastern, selbstklebenden Etiketten oder Klebebändern im Einsatz. An sie werden besonders hohe Anforderungen gestellt: Sie müssen bei Raumtemperatur permanent klebfähig bleiben. Mit leichtem Anpressdruck sollen sie auf fast allen Substraten haften und sich dennoch rückstandsfrei wieder ablösen lassen. Dabei muss die Stärke der Haftkraft genau auf den jeweiligen Verwendungszweck eingestellt sein.

Die Basis der Haftklebstoffe bilden die Rückgratpolymere. Sie geben den Klebstoffen ihre innere Festigkeit (Kohäsion). Aufgabe der UMSICHT-Forscher ist es nun, ein Rückgratpolymer aus dem Rohstoff Polymilchsäure zu entwickeln. Der biologische Werkstoff hat einen entscheidenden Vorteil: Da Milchsäure im industriellen Maßstab produziert wird, lässt sie sich günstig herstellen.

Die Kosten liegen im Bereich der Preise fossil basierter Rückgratpolymere. »Allerdings unterscheiden sich die Eigenschaften der Polymilchsäure komplett von denen der bisher eingesetzten Polymere wie Polyacrylate und styrolbasierte Blockcopolymere«, weiß Dr.-Ing. Stephan Kabasci, der das Geschäftsfeld Nachwachsende Rohstoffe am UMSICHT leitet. Daher müssen die Forscher eine völlig neue Modellrezeptur entwickeln.

Verpackungen mit kompostierbaren Folien

Klebstoffe sind aber auch in vielen Verpackungen enthalten. Kaschierte Folien schützen etwa Lebensmittel vor Schmutz, Feuchtigkeit und Chemikalien. Dabei werden bedruckte Verpackungen und Druckartikel aus Papier ein- oder beidseitig mit einer transparenten, glänzenden, matten oder geprägten Kunststofffolie überzogen. In einem Verbundprojekt entwickeln UMSICHT-Wissenschaftler zusammen mit den Firmen Achilles Papierveredelung Bielefeld, Jowat und Deckert Management Consultants neuartige Klebstoffsysteme, die sowohl den hohen Qualitätsanforderungen von kaschierten Artikeln entsprechen, als auch kompostierbar sind. Die Forscher setzen dafür auf überwiegend wasserbasierte Dispersionsklebstoffe. Bei diesen Materialien sind die Klebstoffbestandteile sehr fein in Wasser verteilt. Sie werden einseitig aufgetragen und nass gefügt.

Zu einer anderen Möglichkeit, biologische Klebstoffe zu entwickeln, führt das Vorbild Natur: Einen besonderen Klebstoff produziert der Rankenfuß-Krebs Dosima. Damit verankert er sich fest an Treibgut. Der Superklebstoff ist so stark, dass er sich kaum mit den üblichen Lösungsmitteln in seine Bestandteile zerlegen lässt. Weitere Besonderheit: Er härtet sogar unter Wasser aus.

Forscher des Fraunhofer-Instituts für Fertigungstechnik und Angewandte Materialforschung IFAM in Bremen versuchen jetzt herauszufinden, aus welchen Aminosäure-Bausteinen die Proteine aufgebaut sind. »Ist das gelungen, werden wir in einem zweiten Schritt die klebenden Proteine im Labor nachbauen«, sagt Dr. Ingo Grunwald, Experte für biologische Klebstoffe am IFAM. Solche Bioklebstoffe sind vor allem für die Medizin interessant: Sie könnten Schnittwunden verschließen oder Nägel und Schrauben bei Knochenbrüchen ersetzen oder unterstützen.

Dr.-Ing. Stephan Kabasci | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2012/juni/natuerlich-kleben.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops