Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nasse Atome: Oberflächenstrukturen störungsfrei abbilden

16.04.2014

Mainzer Physiker macht atomare Strukturen von Oberflächen auch in zähen Flüssigkeit sichtbar. Neue Messtechnik hilft bei Entwicklung von Brennstoffzellen.

Stefan Weber, Physiker am Max-Planck-Institut für Polymerforschung (MPI-P), hat eine Methode entwickelt, mit der die Struktur von Oberflächen in verschiedenen Flüssigkeiten mit unerreichter Genauigkeit gemessen und abgebildet werden kann.


Stefan Weber bildet mit seinem Rasterkraftmikroskop atomare Strukturen ab.

© S. Imhof/MPI-P


Eigenentwicklung: Stefan Webers Rasterkraftmikroskop: Stefan Webers Rasterkraftmikroskop

© S. Imhof/MPI-P

Webers Verfahren basiert auf Messungen mit dem Rasterkraftmikroskop und ist in der Lage, atomare Strukturen an Oberflächen im Detail abzubilden. Bislang ist das ausschließlich in dünnflüssigen Lösungen wie Wasser gelungen. Zähere Flüssigkeiten wie zum Beispiel Öle oder Elektrolyte erschweren diese Messungen erheblich.

Weber gelang es nun, in solch einer zähflüssigen Umgebung die Struktur von Oberflächenatomen abzubilden – und das mit erstaunlich geringem Rauschen und fast ohne Bildstörungen. Die Flüssigkeit war sogar 30mal so zähflüssig wie Wasser. Zusammen mit Forschern des University College Dublin (Irland) hat Weber den Einfluss der Zähigkeit (auch Viskosität genannt) auf das Rauschen der Messungen untersucht. Der Mainzer Physiker stellt die Ergebnisse nun zusammen mit den irischen Wissenschaftlern in der Fachzeitschrift Nanotechnology vor.

"Eine so hohe Auflösung in zähflüssigen Lösungen zu erreichen, ist beeindruckend", sagt Weber. "Diese Erkenntnisse helfen uns bei vielen praktischen Problemen weiter. Zum Beispiel enthalten Brennstoffzellen oder elektrochemischen Batterien viskose Flüssigkeiten." Webers Methode ist prädestiniert, diese atomar genau zu vermessen.

Rasterkraftmikroskopie ist eine etablierte Methode, um Bilder von atomaren Strukturen an Oberflächen zu erzeugen. Dafür tastet eine Messnadel, an ihrer Spitze selbst nicht mehr als einige Atome breit, die Oberfläche einer Probe ab. Die Nadel ist Teil eines elastischen Federarms (Cantilever), der Kräfte registriert, die zwischen den Oberflächenatomen und den Atomen an der Nadelspitze wirken. Um höchste Auflösungen zu erreichen, lässt man die Nadel schwingen. Zähere Flüssigkeiten als Wasser dämpfen diese Schwingungen.

Daraus resultiert ein Rauschen, das das Messen der feinen Oberflächenkräfte erschwert. Stefan Weber experimentierte mit einem Glyzerin-Wasser-Gemisch auf einer Graphitoberfläche, um den Einfluss des Rauschens systematisch zu ermitteln.

„Zu meiner Überraschung war das Bild erstaunlich klar und beinahe rauschfrei“, erinnert sich Weber. Unter anderem stellte sich heraus, dass es entscheidend war, die Schwingungsamplitude des Cantilevers kleiner einzustellen als den Durchmesser der Moleküle der Flüssigkeit. Mit diesen Erkenntnissen könnten viele offene Fragen der Oberflächenphysik neu aufgerollt werden, die u.a. bei der Entwicklung von effektiveren Brennstoffzellen und die Batterietechnik hilfreich sind.

Stefan Weber forscht seit 2012 am MPI-P im Arbeitskreis von Direktor Hans-Jürgen Butt. Schon während seiner Promotion und als Postdoc in Dublin setzte er sich mit der Rasterkraftmikroskopie auseinander und entwickelte das Verfahren weiter. In seiner Zeit am MPI-P hat er ein bestehendes Rasterkraftmikroskop umgebaut und für rauscharme Messungen in Flüssigkeiten optimiert. Damit untersucht er grundlegende Effekte wie die molekulare Selbstorganisation an flüssig-festen Grenzflächen.

Max-Planck-Institut für Polymerforschung
Das 1984 gegründete Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerwissenschaft. Durch die Fokussierung auf so genannte weiche Materie und makromolekulare Materialien ist das Max-Planck-Institut für Polymerforschung mit seiner Forschungsausrichtung weltweit einzigartig. Mitarbeiterinnen und Mitarbeiter aus dem In- und Ausland arbeiten im Rahmen der Grundlagenforschung an der Herstellung und Charakterisierung von Polymeren und der Untersuchung ihrer physikalischen und chemischen Eigenschaften. Anfang 2014 sind insgesamt 518 Personen am MPI-P beschäftigt: Die Belegschaft setzte sich aus 121 Wissenschaftlern, 147 Doktoranden und Diplomanden, 76 Stipendiaten und 174 technischen und Verwaltungsangestellten sowie Hilfskräften zusammen.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/news/nasse_atome - Hintergründe und Details auf der Homepage des Max-Planck-Instituts für Polymerforschung
http://iopscience.iop.org/0957-4484/25/17/175701/ - Das Paper auf der Webseite von Nanotechnology

Stephan Imhof | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie