Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nasse Atome: Oberflächenstrukturen störungsfrei abbilden

16.04.2014

Mainzer Physiker macht atomare Strukturen von Oberflächen auch in zähen Flüssigkeit sichtbar. Neue Messtechnik hilft bei Entwicklung von Brennstoffzellen.

Stefan Weber, Physiker am Max-Planck-Institut für Polymerforschung (MPI-P), hat eine Methode entwickelt, mit der die Struktur von Oberflächen in verschiedenen Flüssigkeiten mit unerreichter Genauigkeit gemessen und abgebildet werden kann.


Stefan Weber bildet mit seinem Rasterkraftmikroskop atomare Strukturen ab.

© S. Imhof/MPI-P


Eigenentwicklung: Stefan Webers Rasterkraftmikroskop: Stefan Webers Rasterkraftmikroskop

© S. Imhof/MPI-P

Webers Verfahren basiert auf Messungen mit dem Rasterkraftmikroskop und ist in der Lage, atomare Strukturen an Oberflächen im Detail abzubilden. Bislang ist das ausschließlich in dünnflüssigen Lösungen wie Wasser gelungen. Zähere Flüssigkeiten wie zum Beispiel Öle oder Elektrolyte erschweren diese Messungen erheblich.

Weber gelang es nun, in solch einer zähflüssigen Umgebung die Struktur von Oberflächenatomen abzubilden – und das mit erstaunlich geringem Rauschen und fast ohne Bildstörungen. Die Flüssigkeit war sogar 30mal so zähflüssig wie Wasser. Zusammen mit Forschern des University College Dublin (Irland) hat Weber den Einfluss der Zähigkeit (auch Viskosität genannt) auf das Rauschen der Messungen untersucht. Der Mainzer Physiker stellt die Ergebnisse nun zusammen mit den irischen Wissenschaftlern in der Fachzeitschrift Nanotechnology vor.

"Eine so hohe Auflösung in zähflüssigen Lösungen zu erreichen, ist beeindruckend", sagt Weber. "Diese Erkenntnisse helfen uns bei vielen praktischen Problemen weiter. Zum Beispiel enthalten Brennstoffzellen oder elektrochemischen Batterien viskose Flüssigkeiten." Webers Methode ist prädestiniert, diese atomar genau zu vermessen.

Rasterkraftmikroskopie ist eine etablierte Methode, um Bilder von atomaren Strukturen an Oberflächen zu erzeugen. Dafür tastet eine Messnadel, an ihrer Spitze selbst nicht mehr als einige Atome breit, die Oberfläche einer Probe ab. Die Nadel ist Teil eines elastischen Federarms (Cantilever), der Kräfte registriert, die zwischen den Oberflächenatomen und den Atomen an der Nadelspitze wirken. Um höchste Auflösungen zu erreichen, lässt man die Nadel schwingen. Zähere Flüssigkeiten als Wasser dämpfen diese Schwingungen.

Daraus resultiert ein Rauschen, das das Messen der feinen Oberflächenkräfte erschwert. Stefan Weber experimentierte mit einem Glyzerin-Wasser-Gemisch auf einer Graphitoberfläche, um den Einfluss des Rauschens systematisch zu ermitteln.

„Zu meiner Überraschung war das Bild erstaunlich klar und beinahe rauschfrei“, erinnert sich Weber. Unter anderem stellte sich heraus, dass es entscheidend war, die Schwingungsamplitude des Cantilevers kleiner einzustellen als den Durchmesser der Moleküle der Flüssigkeit. Mit diesen Erkenntnissen könnten viele offene Fragen der Oberflächenphysik neu aufgerollt werden, die u.a. bei der Entwicklung von effektiveren Brennstoffzellen und die Batterietechnik hilfreich sind.

Stefan Weber forscht seit 2012 am MPI-P im Arbeitskreis von Direktor Hans-Jürgen Butt. Schon während seiner Promotion und als Postdoc in Dublin setzte er sich mit der Rasterkraftmikroskopie auseinander und entwickelte das Verfahren weiter. In seiner Zeit am MPI-P hat er ein bestehendes Rasterkraftmikroskop umgebaut und für rauscharme Messungen in Flüssigkeiten optimiert. Damit untersucht er grundlegende Effekte wie die molekulare Selbstorganisation an flüssig-festen Grenzflächen.

Max-Planck-Institut für Polymerforschung
Das 1984 gegründete Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerwissenschaft. Durch die Fokussierung auf so genannte weiche Materie und makromolekulare Materialien ist das Max-Planck-Institut für Polymerforschung mit seiner Forschungsausrichtung weltweit einzigartig. Mitarbeiterinnen und Mitarbeiter aus dem In- und Ausland arbeiten im Rahmen der Grundlagenforschung an der Herstellung und Charakterisierung von Polymeren und der Untersuchung ihrer physikalischen und chemischen Eigenschaften. Anfang 2014 sind insgesamt 518 Personen am MPI-P beschäftigt: Die Belegschaft setzte sich aus 121 Wissenschaftlern, 147 Doktoranden und Diplomanden, 76 Stipendiaten und 174 technischen und Verwaltungsangestellten sowie Hilfskräften zusammen.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/news/nasse_atome - Hintergründe und Details auf der Homepage des Max-Planck-Instituts für Polymerforschung
http://iopscience.iop.org/0957-4484/25/17/175701/ - Das Paper auf der Webseite von Nanotechnology

Stephan Imhof | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?
30.03.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE