Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanotechnologie im Glasschwamm

27.01.2014
Monorhaphis chuni erzeugt eine Glasnadel mit völlig periodisch angeordneten Nanoporen

Materialwissenschaftler lösen viele Probleme nach dem Vorbild der Natur – und manchmal stellen sie das erst nachträglich fest. Ein Beispiel dafür ist der Glasstab, auf dem der Meeresschwamm Monorhaphis chuni lebt.


Ein Glasstab als Maßstab: Der Schwamm Monorhaphis chuni wächst auf einer Silikatnadel, deren Struktur technischem mesoporösen Materialien ähnelt. Die Poren des natürlichen Materials sind jedoch einheitlicher in ihrer Größe und regelmäßiger angeordnet als die Hohlräume der synthetischen Pendants. Die lichtmikroskopische Aufnahme zeigt eine Glasnadel, die für die Strukturuntersuchungen zu einem exakten Zylinder geschliffen wurde.

© Igor Zlotnikov / MPI für Kolloid- und Grenzflächenforschung

Ein Team der Max-Planck-Institute für Kolloid- und Grenzflächenforschung und für Mikrostrukturphysik hat dessen Bauweise jetzt gefunden und untersucht. Dabei entdeckten die Forscher, dass der Glasstab fast so aufgebaut ist wie poröse Nanomaterialien, die für biomedizinische Anwendungen, Sensoren oder die chemische Katalyse relevant sind.

M. Chuni baut das Silikat, also das Glas, um regelmäßig angeordnete, etwa fünf Nanometer große Silikatein-Proteine. So entsteht eine Struktur, die Stapeln von Eiern in Kartons gleicht. Die Eier entsprechen dabei den Eiweiß-Molekülen, während die Kartons für das Glas stehen. Für technische Anwendungen werden Silicatstrukturen um Fetttröpfchen herum erzeugt. Die so entstandenen Materialien besitzen jedoch eine Porengröße, die nicht so einheitlich ist wie die Protein-gefüllten Hohlräume im Glasstab von M. chuni.

In Medizin und Technik kommt es oft auf die Oberfläche an, und darauf, dass diese möglichst groß ist. Dann sind poröse Materialien gefragt. Sie können gemessen an ihrem Volumen etwa große Mengen medizinischer Wirkstoffe aufnehmen und im Körper allmählich freisetzen. In der Chemie hängt die Effizienz zahlloser Prozesse davon ab, dass Katalysatoren eine große Oberfläche aufweisen, an der Moleküle reagieren können. Und Sensoren nehmen Stoffe umso empfindlicher wahr, je größer die Oberfläche ist, an denen Moleküle binden können.

Für solche Zwecke sind Materialien mit Poren zwischen zwei und 50 Nanometern Größe besonders gut geeignet – Wissenschaftler sprechen von mesoporösen Strukturen, um sie von mikroporösen mit kleineren Poren und makroporösen mit größeren abzugrenzen. Nun hat eine Gruppe um Igor Zlotnikov und Peter Fratzl, die am Max-Planck-Institut für Kolloid- und Grenzflächenforschung Biomaterialien untersuchen, erstmals ein mesoporöses Material in der Natur gefunden, nämlich im Silikatschwamm Monorhaphis chuni. Der Schwamm lebt am Grund des indischen und pazifischen Ozeans und hält sich mit einer rund einen Zentimeter dicken Glasnadel am Boden fest. Während seines Lebens kann die Nadel bis zu drei Meter in die Höhe wachsen. Die Silikatstruktur wird von Poren mit etwa fünf Nanometern Durchmesser durchsetzt. In den Hohlräumen sitzt jeweils ein eiförmiges Molekül des Proteins Silikatein, wobei sich die Proteinmoleküle benachbarter Poren durch Löcher im Glas berühren.

Der Glasschwamm setzt bei Porengröße und -anordnung Maßstäbe

„Mesoporöse Silikat-Strukturen gehören zu den am meisten erforschten Materialien. Umso erstaunlicher ist es, dass wir sie jetzt auch in der Natur finden“, sagt Igor Zlotnikov. „Und vermutlich treten sie nicht nur bei M. chuni, sondern zumindest auch noch bei anderen Glasschwämmen auf.“ M. chuni nutzt aber nicht nur ein poröses Material, das auch technisch relevant ist. Der Glasschwamm setzt in puncto Größe und Anordnung der Poren auch Maßstäbe. In der Probe, die Igor Zlotnikov und seine Kollegen untersuchten, sind die Poren nicht nur alle einheitlich groß, sondern auch völlig regelmäßig angeordnet. Bildlich gesprochen ähnelt die Struktur übereinandergestapelten palettenartigen Eierkartons, wie man sie auf jedem Hühnerhof findet.

Ein genaues Bild vom Bauplan der Glasnadel verschafften sich die Golmer Forscher mithilfe zweier Methoden. Zum einen durchleuchteten sie ihre Probe mit Röntgenstrahlung am BESSY II in Berlin. Üblicherweise dienen Experimente mit Röntgenstreuung dazu, die atomare Kristallstruktur aufzuklären. Das Team um Igor Zlotnikov nutzte jedoch eine Variante der Technik, die etwas über die größeren Struktureinheiten, nämlich die Poren und ihre Anordnung verrät. Die Ergebnisse dieser Untersuchungen bestätigten sie. In Kooperation mit einem Team um Peter Werner vom Max-Planck-Institut für Mikrostrukturphysik untersuchten sie das Material in einem Transmissions-Elektronenmikroskop, das nicht nur Strukturdetails liefert, sondern auch Aussagen über die chemische Zusammensetzung ermöglicht.

Mehr noch als die Akkuratesse der Struktur, die sich den Forschern in ihren Untersuchungen offenbarte, überrascht sie jedoch die Art und Weise, wie M. chuni das Material erzeugt: „Es ist absolut verblüffend, dass Natur und Materialwissenschaft einen ähnlichen Herstellungsweg favorisiert – ohne dass die Materialwissenschaft die Methode von M. chuni kannte“, sagt Peter Fratzl, Direktor am Max-Planck-Institut für Kolloid- und Grenzflächenforschung. Um im Bild der Eierkartons zu bleiben, schichtet der Glasschwamm zunächst eine oder vielleicht auch mehrere Lagen Eier, sprich Proteinmoleküle, auf und füllt die Zwischenräume dann mit Karton, also Glas.

In synthetischen mesoporösen Materialien variiert die Porengröße

Da die Proteinmoleküle, die als eine Art Model für die Silikatstruktur dienen, alle gleich groß, weisen auch die Poren des Biomaterials alle denselben Durchmesser auf und bilden eine völlig periodische Struktur. Diese Präzision technisch zu erreichen ist schwierig, obwohl mesoporöse Gläser ganz ähnlich entstehen. Hier geben Fetttröpfchen die Porenform vor, um die herum das Silikat wächst. Die Fetttröpfchen werden anschließend mit einem Detergenz, im Prinzip nichts anderes als Spülmittel, aus der Nanostruktur gelöst.

Materialwissenschaftler können die Größe der Fetttröpfchen jedoch nicht so präzise einstellen, wie der biochemische Apparat eines Lebewesens den Umfang der Eiweißteilchen steuert. Die Porengröße in synthetischen mesoporösen Materialien variiert daher, und die Hohlräume ordnen sich auch nicht in einem völlig regelmäßigen Muster an.

„Mit Silikatein oder anderen Proteinen ließen sich mesoporöse Materialien mit einheitlicher Porengröße und periodischer Struktur herstellen“, sagt Igor Zlotnikov. „Das wäre allerdings sehr teuer.“ Im Labor ähnlich regelmäßig gebaute Materialien zu züchten, wie M. chuni sie zuwege bringt, ist einstweilen auch nicht das Ziel der Max-Planck-Forscher. Sie untersuchen derzeit, ob die Silikatstruktur über größere Bereiche der Glasnadel so gleichmäßig geformt ist, wie in dem quadratischen Ausschnitt mit 100 Nanometer Seitenlänge, den sie für die aktuelle Veröffentlichung analysierten. „Außerdem beschäftigen wir uns mit dem Zusammenhang zwischen der Struktur und den mechanischen Eigenschaften der Glasnadel“, sagt Peter Fratzl. Denn auch da setzt M. chuni Maßstäbe und sorgt so dafür, dass mit der Glasnadel nicht unversehens seine Existenz unter ihm zusammenbricht.

Ansprechpartner

Dr. Igor Zlotnikov
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9453
E-Mail: igor.zlotnikov@mpikg.mpg.de
Prof. Dr. Peter Fratzl
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9401
Fax: +49 331 567-9402
E-Mail: gabbe@mpikg.mpg.de
Katja Schulze
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9203
Fax: +49 331 567-9202
E-Mail: katja.schulze@mpikg.mpg.de
Originalpublikation
Igor Zlotnikov, Peter Werner, Horst Blumtritt, Andreas Graff, Yannicke Dauphin, Emil Zolotoyabko und Peter Fratzl

A Perfectly Periodic Three-Dimensional Protein/Silica Mesoporous Structure Produced by an Organism

12. Dezember 2013

Dr. Igor Zlotnikov | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7852168/glasschwamm_mesoporoes_glas

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ventile für winzige Teilchen
23.05.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Advanced Materials: Glas wie Kunststoff bearbeiten
18.05.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rotierende Rugbybälle unter den massereichsten Galaxien

23.05.2018 | Physik Astronomie

Invasive Quallen: Strömungen als Ausbreitungsmotor

23.05.2018 | Ökologie Umwelt- Naturschutz

Matrix-Theorie als Ursprung von Raumzeit und Kosmologie

23.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics