Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Nanosystemen zur Mesotechnologie: SFB an der Universität Bayreuth wird verlängert

04.06.2013
Großer Erfolg für die Polymer- und Kolloidforschung an der Universität Bayreuth: Wie die Deutsche Forschungsgemeinschaft vor kurzem bekanntgab, wird der 2009 eingerichtete SFB 840 "Von partikulären Nanosystemen zur Mesotechnologie" für vier weitere Jahre mit mehr als sieben Millionen Euro gefördert.

Damit kann die Universität Bayreuth schon bald auf eine mehr als 30jährige, seit 1984 ununterbrochene Tradition von Sonderforschungsbereichen in der Makromolekül- und Kolloidforschung zurückblicken. Mit ihrer aktuellen Förderentscheidung bestätigt die DFG die Spitzenposition der Universität Bayreuth auf einem ihrer international ausgewiesenen Profilfelder.

Komplexe Systembausteine für innovative Anwendungen

Eine effiziente Energieumwandlung und -nutzung, eine nachhaltige Schonung von Umwelt und Ressourcen, aber auch Fortschritte in der Informationstechnologie zu fördern, sind zentrale Herausforderungen an die Materialchemie. Die in Zukunft benötigten Materialien werden Strukturen besitzen müssen, die deutlich komplexer sind als die Strukturen der heute bekannten Materialien. Hier setzt der SFB 840 an. Er kann dabei an die signifikanten Fortschritte anknüpfen, welche die Nanotechnologie bei der kontrollierten Herstellung strukturierter Nanopartikel erzielt hat. Diese Partikel haben eine Größe von weniger als 100 Nanometern und stehen als Baueinheiten für technologische Anwendungen zur Verfügung. Daher muss sich an diese Erfolge der Nanotechnologie nun ein weiterer Schritt anschließen: die Integration dieser Bausteine in größere Einheiten, nämlich in Systembausteine mit definierten Eigenschaften und Funktionen.
Die Mesotechnologie ist ein vergleichsweise junger Forschungszweig, der sich mit dieser Integration befasst. Sie macht es möglich, dass aus nanopartikulären Einheiten komplexe Systembausteine entstehen, die für innovative Anwendungen auf der makroskopischen Ebene genutzt werden können. "Der kontrollierte Übergang von der Nano- zur Meso-Skala gilt heute international als eine der großen Herausforderungen für die Nanotechnologie-Community", erklärt Prof. Dr. Josef Breu, der Sprecher des SFB 840.

Prozesse der kontrollierten Selbstorganisation:
Auf dem Weg zu neuen, hierarchisch aufgebauten Strukturen

Der SFB 840 widmet sich daher der Aufgabe, neue und komplexe Systembausteine zu entwickeln, die möglichst zielgenau auf die jeweils gewünschten Anwendungen zugeschnitten sind. Ein wesentlicher Schritt ist dabei das zielgerichtete Design der zugrunde liegenden nanoskaligen Einheiten. Diese sollen so programmiert werden, dass sie sich im Verlauf kontrollierter Prozesse in mesoskalige, hierarchisch aufgebaute Strukturen einfügen. Entscheidend ist dabei, wie die einzelnen Baueinheiten in und mit einer umgebenden Matrix oder Oberfläche zusammenwirken; denn aus diesen Wechselwirkungen gehen die gewünschten Materialeigenschaften hervor. Die Entwicklung neuer Systeme auf der Meso-Skala beruht also wesentlich auf Prozessen der kontrollierten Selbstorganisation, die sich zu hierarchisch aufgebauten Strukturen zusammenschließen. Die Bayreuther Wissenschaftler wollen deshalb von vergleichbaren Prozessen lernen, wie sie in der Natur vielfach anzutreffen sind. Perlmutt oder Knochen sind jahrtausendealte Beispiele dafür, dass winzige Partikel wie von selbst komplexe Strukturen bilden.

Interdisziplinäre Zusammenarbeit auf technologischen Zukunftsfeldern

Der SFB ist durch die enge Zusammenarbeit von Arbeitsgruppen aus der Chemie, der Physik und den Ingenieurswissenschaften geprägt. Dabei werden auf technologischen Zukunftsfeldern wegbereitende Systembausteine erschlossen. Auf dem Gebiet der Photovoltaik werden effizientere Lichtsammelsysteme und aktive Matrizen entwickelt; auf dem Gebiet der Katalyse richtet sich das Interesse auf hierarchisch poröse, hoch permeable Feststoffkatalysatoren, die bei der Katalyse in flüssiger Phase zum Einsatz kommen. Im Bereich der Photonik geht es um die Nutzung quasikristalliner Strukturen. Und im Bereich der Optoelektronik werden transparente, flexible Hochbarrierebeschichtungen erforscht.

Die in der ersten Förderperiode (2009 - 2013) erzielten Fortschritte erlauben schon jetzt eine wesentlich zielgenauere Realisierung von komplexen, funktionalen Systembausteinen. "In den letzten vier Jahren ist es uns gelungen, das wissenschaftliche Verständnis für Prozesse der Selbstorganisation bedeutend weiterzuentwickeln," berichtet Prof. Dr. Josef Breu. "Damit werden ineffiziente zeit- und materialintensive Trial-und-Error-Verfahren vermieden und wertvolle Materialressourcen geschont. Es freut uns sehr, dass die DFG es uns jetzt ermöglicht, die bisherigen wissenschaftlichen Erfolge auszubauen, technologische Innovationen zu fördern und auf der Basis unserer Forschungserfahrungen neue Herausforderungen anzugehen." In den kommenden vier Jahren soll die programmierte Selbstorganisation als elegantes, einfaches und preiswertes Verfahren weiterentwickelt werden, um die Herstellung hochkomplexer Materialstrukturen zu fördern. Insbesondere soll das Potenzial von Hybrid- und Kompositmaterialien in seiner ganzen Breite erforscht werden.
Der Bayreuther SFB 840 wird auch in Zukunft von der engen Zusammenarbeit mit dem Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG) profitieren. Das BZKG, ein interdisziplinäres Forschungszentrum der Universität Bayreuth, stärkt die Zusammenarbeit von Chemikern, Physikern und Ingenieurwissenschaftlern auf dem Bayreuther Campus und ist auf dem Gebiet der Kolloidforschung ein viel gefragter Partner für Industrieunternehmen.

Homepage des SFB 840:
http://www.sfb840.uni-bayreuth.de

Kontaktadresse für weitere Informationen:

Professor Dr. Josef Breu
- Sprecher des SFB 840 -
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 / 55-2530 oder -4357
E-Mail: josef.breu@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.sfb840.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics