Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanostrukturiertes Germanium für portable Photovoltaik und Akku-Elektroden

07.12.2015

Mit einem neuen Verfahren stellen Forscher der Technischen Universität München (TUM) und der Ludwig-Maximilians-Universität München (LMU) hauchdünne, robuste und gleichzeitig hochporöse Halbleiterschichten her. Ein viel versprechendes Material – beispielsweise für kleine, leichte und langlebige flexible Solarzellen oder Elektroden für leistungsfähigere Akkus.

Die Beschichtung des Plättchens, das Professor Thomas Fässler, Inhaber des Lehrstuhls für Anorganische Chemie mit Schwerpunkt Neue Materialien an der TU München in Händen hält, schimmert wie Opal. Und sie hat erstaunliche Eigenschaften: Sie ist hart wie ein Kristall, hauchdünn und – da hochporös – federleicht.


Mit geeigneten Polymeren gefüllt, werden aus der hochporösen Germaniumschicht hybride Solarzellen

Foto: Andreas Battenberg / TUM


Elektronenmikroskopische Aufnahme der Germanium-Struktur nach Herauslösen der polymeren Template

Bild: Katia Rodewald / TUM

Indem sie in die Poren des Materials geeignete organische Polymere einbauen, können die Wissenschaftler die elektrischen Eigenschaften der entstehenden Hybridmaterialien maßschneidern. Die Bauweise spart nicht nur Platz, sondern schafft auch große Grenzflächen, die den Wirkungsgrad erhöhen.

„Unser Ausgangsmaterial kann man sich wie ein großporiges Gerüst vorstellen, ähnlich aufgebaut wie eine Bienenwabe. Die Wände bestehen aus anorganischem, halbleitendem Germanium, das elektrische Ladungen erzeugen und speichern kann. Weil die Wabenwände hauchdünn sind, müssen Ladungen keine weiten Wege zurücklegen“, erklärt Fässler.

Der neue Bauplan: Bottom-up statt Top-down

Um sprödes, hartes Germanium in eine flexible und poröse Schicht zu verwandeln, mussten die Forscher allerdings einige Tricks anwenden. Traditionell werden Ätztechniken eingesetzt, um die Oberfläche von Germanium zu strukturieren. Diese Top-down-Methode ist jedoch auf atomarer Ebene schwer kontrollierbar. Das neue Verfahren löst dieses Problem.

Zusammen mit seinem Team hat Fässler einen Syntheseweg etabliert, der die gewünschten Strukturen exakt und reproduzierbar erzeugt. Ausgangsmaterial sind Cluster aus jeweils neun Germanium-Atomen. Weil diese Cluster elektrisch geladen sind, stoßen sie sich ab, solange sie sich in Lösung befinden. Eine Vernetzung findet erst statt, wenn das Lösungsmittel abgedampft wird.

Sie kann durch einfaches Erhitzen auf 500 °C oder chemisch erfolgen. Dazu gibt man beispielsweise Germaniumchlorid zu. Nimmt man stattdessen andere Chloride, wie zum Beispiel Phosphorchlorid, so lassen sich die Germaniumstrukturen auf einfachste Weise dotieren. Die Eigenschaften der resultierenden Nanomaterialien können die Wissenschaftler damit gezielt einstellen.

Kunststoffkügelchen als Nano-Template

Damit die Germanium-Cluster die gewünschten porösen Strukturen bilden, entwickelte LMU-Forscherin Dr. Dina Fattakhova-Rohlfing eine Methode, die eine Nanostrukturierung ermöglicht: Winzige Polymerkügelchen bilden im ersten Schritt dreidimensionale Schablonen.

Im nächsten Schritt füllt die Germaniumcluster-Lösung die Lücken zwischen den Kügelchen. Sobald sich auf der Oberfläche der Kügelchen stabile Germanium-Netzwerke gebildet haben, werden die Template durch Erhitzen herausgelöst. Übrig bleibt der porenreiche Nano-Film.

Die eingesetzten Polymerkügelchen haben einen Durchmesser von 50 bis 200 Nanometern und bilden eine Opalstruktur. Das Germanium-Gerüst, das an ihren Oberflächen entsteht, bildet die Negativform – eine inverse Opalstruktur. Die Nanoschichten schimmern daher wie Opal.

„Schon das poröse Germanium hat einzigartige optische und elektrische Eigenschaften, von dem viele energierelevante Anwendungen profitieren können“, sagt LMU-Forscherin Dr. Dina Fattakhova-Rohlfing, die zusammen mit Fässler das Material entwickelte. „Darüber hinaus können wir die Poren mit verschiedensten funktionellen Stoffen füllen und so eine breite Palette neuartiger Hybridmaterialien erzeugen.“

Nano-Schichten machen portable Photovoltaik fit für die Zukunft

„Kombiniert mit Polymeren eignen sich poröse Germanium-Strukturen für die Entwicklung einer neuen Generation stabiler, superleichter und flexibler Solarzellen, die unterwegs Handy, Kamera und Laptop aufladen könnten“, erläutert Physiker Peter Müller-Buschbaum, Professor für Funktionelle Materialien der TU München.

Hersteller auf der ganzen Welt suchen derzeit nach leichten und strapazierfähigen Materialien für portable Solarzellen. Bisher werden meist organische Verbindungen verwendet, die empfindlich und nicht besonders langlebig sind. Durch Hitze und Lichteinstrahlung zersetzen sich die Polymere, die Leistung nimmt ab. Die dünnen und gleichzeitig stabilen Germanium-Hybridschichten wären da eine echte Alternative.

Nanoschichten für neue Batteriesysteme

Als nächstes wollen die Forscher die neue Technik nutzen, um auch hochporöse Silizium-Schichten herzustellen. Die Schichten werden derzeit auch als Anode für wieder aufladbare Batterien getestet. Sie könnten die bisher üblichen Graphitschichten in Akkus ersetzen und deren Kapazität verbessern.

Gefördert wurde die Entwicklung durch das Programm „Solar Technologies go Hybrid“ des Bayerischen Wissenschaftsministeriums, im Rahmen des Exzellenzclusters „Nanosystems Initiative Munich (NIM) durch die Deutsche Forschungsgemeinschaft sowie durch das Center for Nanoscience (CeNS).

Publikation:

Zintl Clusters as Wet Chemical Precursors for Germanium Nanomorphologies with Tunable Composition; Manuel M. Bentlohner, Markus Waibel, Patrick Zeller, Kuhu Sarkar, Peter Müller-Buschbaum, Dina Fattakhova-Rohlfing, Thomas F. Fässler
Angewandte Chemie, online 03.12.2015 – DOI: 10.1002/ange.201508246

Kontakt:

Prof. Dr. Thomas F. Fässler
Technische Universität München
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13131 – E-Mail: Thomas.Faessler@lrz.tum.de

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/ange.201508246/full
http://www.ch.tum.de/faessler/
https://vimeo.com/76125397

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Beschichtung bei Industrieanlagen soll Emissionen senken
12.12.2017 | Technische Universität Kaiserslautern

nachricht Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften