Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanostrukturiertes Germanium für portable Photovoltaik und Akku-Elektroden

07.12.2015

Mit einem neuen Verfahren stellen Forscher der Technischen Universität München (TUM) und der Ludwig-Maximilians-Universität München (LMU) hauchdünne, robuste und gleichzeitig hochporöse Halbleiterschichten her. Ein viel versprechendes Material – beispielsweise für kleine, leichte und langlebige flexible Solarzellen oder Elektroden für leistungsfähigere Akkus.

Die Beschichtung des Plättchens, das Professor Thomas Fässler, Inhaber des Lehrstuhls für Anorganische Chemie mit Schwerpunkt Neue Materialien an der TU München in Händen hält, schimmert wie Opal. Und sie hat erstaunliche Eigenschaften: Sie ist hart wie ein Kristall, hauchdünn und – da hochporös – federleicht.


Mit geeigneten Polymeren gefüllt, werden aus der hochporösen Germaniumschicht hybride Solarzellen

Foto: Andreas Battenberg / TUM


Elektronenmikroskopische Aufnahme der Germanium-Struktur nach Herauslösen der polymeren Template

Bild: Katia Rodewald / TUM

Indem sie in die Poren des Materials geeignete organische Polymere einbauen, können die Wissenschaftler die elektrischen Eigenschaften der entstehenden Hybridmaterialien maßschneidern. Die Bauweise spart nicht nur Platz, sondern schafft auch große Grenzflächen, die den Wirkungsgrad erhöhen.

„Unser Ausgangsmaterial kann man sich wie ein großporiges Gerüst vorstellen, ähnlich aufgebaut wie eine Bienenwabe. Die Wände bestehen aus anorganischem, halbleitendem Germanium, das elektrische Ladungen erzeugen und speichern kann. Weil die Wabenwände hauchdünn sind, müssen Ladungen keine weiten Wege zurücklegen“, erklärt Fässler.

Der neue Bauplan: Bottom-up statt Top-down

Um sprödes, hartes Germanium in eine flexible und poröse Schicht zu verwandeln, mussten die Forscher allerdings einige Tricks anwenden. Traditionell werden Ätztechniken eingesetzt, um die Oberfläche von Germanium zu strukturieren. Diese Top-down-Methode ist jedoch auf atomarer Ebene schwer kontrollierbar. Das neue Verfahren löst dieses Problem.

Zusammen mit seinem Team hat Fässler einen Syntheseweg etabliert, der die gewünschten Strukturen exakt und reproduzierbar erzeugt. Ausgangsmaterial sind Cluster aus jeweils neun Germanium-Atomen. Weil diese Cluster elektrisch geladen sind, stoßen sie sich ab, solange sie sich in Lösung befinden. Eine Vernetzung findet erst statt, wenn das Lösungsmittel abgedampft wird.

Sie kann durch einfaches Erhitzen auf 500 °C oder chemisch erfolgen. Dazu gibt man beispielsweise Germaniumchlorid zu. Nimmt man stattdessen andere Chloride, wie zum Beispiel Phosphorchlorid, so lassen sich die Germaniumstrukturen auf einfachste Weise dotieren. Die Eigenschaften der resultierenden Nanomaterialien können die Wissenschaftler damit gezielt einstellen.

Kunststoffkügelchen als Nano-Template

Damit die Germanium-Cluster die gewünschten porösen Strukturen bilden, entwickelte LMU-Forscherin Dr. Dina Fattakhova-Rohlfing eine Methode, die eine Nanostrukturierung ermöglicht: Winzige Polymerkügelchen bilden im ersten Schritt dreidimensionale Schablonen.

Im nächsten Schritt füllt die Germaniumcluster-Lösung die Lücken zwischen den Kügelchen. Sobald sich auf der Oberfläche der Kügelchen stabile Germanium-Netzwerke gebildet haben, werden die Template durch Erhitzen herausgelöst. Übrig bleibt der porenreiche Nano-Film.

Die eingesetzten Polymerkügelchen haben einen Durchmesser von 50 bis 200 Nanometern und bilden eine Opalstruktur. Das Germanium-Gerüst, das an ihren Oberflächen entsteht, bildet die Negativform – eine inverse Opalstruktur. Die Nanoschichten schimmern daher wie Opal.

„Schon das poröse Germanium hat einzigartige optische und elektrische Eigenschaften, von dem viele energierelevante Anwendungen profitieren können“, sagt LMU-Forscherin Dr. Dina Fattakhova-Rohlfing, die zusammen mit Fässler das Material entwickelte. „Darüber hinaus können wir die Poren mit verschiedensten funktionellen Stoffen füllen und so eine breite Palette neuartiger Hybridmaterialien erzeugen.“

Nano-Schichten machen portable Photovoltaik fit für die Zukunft

„Kombiniert mit Polymeren eignen sich poröse Germanium-Strukturen für die Entwicklung einer neuen Generation stabiler, superleichter und flexibler Solarzellen, die unterwegs Handy, Kamera und Laptop aufladen könnten“, erläutert Physiker Peter Müller-Buschbaum, Professor für Funktionelle Materialien der TU München.

Hersteller auf der ganzen Welt suchen derzeit nach leichten und strapazierfähigen Materialien für portable Solarzellen. Bisher werden meist organische Verbindungen verwendet, die empfindlich und nicht besonders langlebig sind. Durch Hitze und Lichteinstrahlung zersetzen sich die Polymere, die Leistung nimmt ab. Die dünnen und gleichzeitig stabilen Germanium-Hybridschichten wären da eine echte Alternative.

Nanoschichten für neue Batteriesysteme

Als nächstes wollen die Forscher die neue Technik nutzen, um auch hochporöse Silizium-Schichten herzustellen. Die Schichten werden derzeit auch als Anode für wieder aufladbare Batterien getestet. Sie könnten die bisher üblichen Graphitschichten in Akkus ersetzen und deren Kapazität verbessern.

Gefördert wurde die Entwicklung durch das Programm „Solar Technologies go Hybrid“ des Bayerischen Wissenschaftsministeriums, im Rahmen des Exzellenzclusters „Nanosystems Initiative Munich (NIM) durch die Deutsche Forschungsgemeinschaft sowie durch das Center for Nanoscience (CeNS).

Publikation:

Zintl Clusters as Wet Chemical Precursors for Germanium Nanomorphologies with Tunable Composition; Manuel M. Bentlohner, Markus Waibel, Patrick Zeller, Kuhu Sarkar, Peter Müller-Buschbaum, Dina Fattakhova-Rohlfing, Thomas F. Fässler
Angewandte Chemie, online 03.12.2015 – DOI: 10.1002/ange.201508246

Kontakt:

Prof. Dr. Thomas F. Fässler
Technische Universität München
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13131 – E-Mail: Thomas.Faessler@lrz.tum.de

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/ange.201508246/full
http://www.ch.tum.de/faessler/
https://vimeo.com/76125397

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscherin entwickelt elektronische Textilstruktur für Medizinprodukte
17.02.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Untergrund beeinflusst Halbleiter-Monolagen
16.02.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Proteine Zellmembranen verformen

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor Oliver Daumke vom MDC erforscht. Er und sein Team haben nun aufgeklärt, wie sich diese Proteine auf der Oberfläche von Zellen zusammenlagern und dadurch deren Außenhaut verformen.

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Poseidon goes Politics – Wer oder was regiert die Ozeane?

27.02.2017 | Veranstaltungen

Fachtagung Rapid Prototyping 2017 – Innovationen in Entwicklung und Produktion

27.02.2017 | Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herz-Untersuchung: Kontrastmittel sparen mit dem Mini-Teilchenbeschleuniger

27.02.2017 | Medizintechnik

Neue Maßstäbe für eine bessere Wasserqualität in Europa

27.02.2017 | Biowissenschaften Chemie

Wenn der Schmerz keine Worte findet - Künstliche Intelligenz zur automatisierten Schmerzerkennung

27.02.2017 | Medizintechnik