Nanospeicher bringen Computer groß raus

Wissenschaftler des Max-Planck-Instituts für intelligente Systeme in Stuttgart und des Hallenser Max-Planck-Instituts für Mikrostrukturphysik bereiten den Weg für magnetische Speichermaterialien, die das ermöglichen, und nutzen dabei geschickt die ganz eigenen Gesetze der Nanowelt aus.

Die Vision des Physikers Richard Feynman klingt auch heute noch atemberaubend: Es sei möglich, den Inhalt sämtlicher Buchtitel der Welt – Feynman schätzte ihre Zahl Ende der 1950er-Jahre auf 24 Millionen – in einem Staubkorn zu speichern, das gerade noch mit bloßem Auge sichtbar ist. Dafür sei es allerdings nötig, ein digitales Bit, also die kleinste Speichereinheit, die die Werte Null oder Eins aufnehmen kann, auf einen Platz zu zwängen, der dem Volumen von nur 100 Atomen entspricht.

Vielleicht fühlen sich die Ingenieure von dieser Vorstellung angespornt. Jedenfalls packen sie seither immer mehr Daten auf Speichermedien wie Festplatten: ihre Speicherdichte, also die Anzahl der Bits pro Quadratzentimeter, verdoppelte sich alle 18 Monate. Vor 30 Jahren konnte man auf eine Festplatte etwa zehn Megabyte ablegen, heute passen darauf 100000 Mal mehr Daten. Ein Bit belegt auf einer Terabyte-Festplatte noch einige hunderttausend Atome. Wenn Bits und Bytes weiterhin im gleichen Tempo schrumpfen wie bisher, würde Feynmans Traum in etwa zehn Jahren in Erfüllung gehen.

Doch die Reise in die Nanowelt, in der ein paar hundert Atome Informationen speichern oder sie verarbeiten, wird immer beschwerlicher. So lassen sich magnetische Speichermedien wie Festplatten nicht beliebig weit miniaturisieren. Magnetische Schichten an ihrer Oberfläche enthalten Speicherzellen, die je ein Bit aufnehmen. Ob die Zelle eine Null oder eine Eins darstellt, entscheidet ihre Magnetisierung. Diese ergibt sich aus der Summe der magnetischen Momente, welche die einzelnen Atome in der Zelle tragen: Jedes Atom wirkt wie ein winziger Stabmagnet, dessen Richtung und Stärke durch das magnetische Moment angegeben wird. Die magnetischen Momente der Atome ordnen sich in Speicherpunkten entweder ferromagnetisch oder antiferromagnetisch an, richten sich also alle parallel oder abwechselnd in die eine und in die entgegengesetzte Richtung aus.

Vollständiger Text unter: www.mpg.de/4361670/nanospeicher

Ansprechpartner
Prof. Dr. Ingrid Mertig
Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale
Telefon: +49 345 55-25430
E-Mail: ingrid.mertig@physik.uni-halle.de
Dr. Valeri Stepanyuk
Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale
Telefon: +49 345 5582-537
Fax: +49 345 5582-765
E-Mail: stepanyu@mpi-halle.de
Dr. Hermann Stoll
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-1848
Fax: +49 711 689-1952
E-Mail: stoll@mf.mpg.de

Media Contact

Christian Meier Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer