Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanosäulen: Von wegen spröde! Überraschendes Silizium

08.10.2009
Silizium, das wichtigste Halbleitermaterial überhaupt, gilt als spröde und brüchig wie Fensterglas. Im Nanometermassstab allerdings ändert der Werkstoff seine Eigenschaften.

Empa-Forscher erbrachten den Beweis, indem sie winzige Siliziumsäulen herstellten. Ist deren Durchmesser klein genug, brechen belastete Säulen nicht mehr wie grössere Siliziumstücke, sondern geben dem Druck nach und verformen sich plastisch, ähnlich wie metallische Werkstoffe. Diese Erkenntnis eröffnet dem Design von mechanischen Mikrosystemen und der Uhrenindustrie vollkommen neue Materialperspektiven.

Bereits Empa-Gründer Ludwig von Tetmajer hat sich mit der mechanischen Belastung von Säulen befasst. Er konnte nach dem Einsturz der Eisenbahnbrücke in Münchenstein durch Druckversuche im Labor zeigen, dass die Eulersche Knickformel für schlanke Stäbe nicht immer zutraf und korrigiert werden musste. "Wir machten das Gleiche 127 Jahre später, allerdings auf der Nanoskala, und erfuhren dabei Überraschendes: Anstatt knickenden, brüchigen Nano-Siliziumsäulen erlebten wir solche, die sich unter Druck ?wie Butter? plastisch verformen", erklärt Johann Michler, Leiter der Abteilung "Mechanics of Materials and Nanostructures" in Thun.

Silizium - der wichtigste Werkstoff der Halbleiterindustrie

Silizium ist das am häufigsten verwendete Grundmaterial in der Halbleiter- und Photovoltaikindustrie. Es dient als Ausgangsmaterial für elektronische Bauelemente wie Computerprozessoren und für viele Sensoren und mikromechanische Systeme, zum Beispiel für den Hebelarm in einem Rasterkraftmikroskop. Ausserdem sind über 90 Prozent der heutigen Solarzellen aus Silizium gefertigt.

Doch das Material hat seine Limiten, denn Silizium gilt als spröde: Ein Siliziumwafer - eine dünne Scheibe aus Silizium und Ausgangsmaterial für die vorgenannten Anwendungen - zerbricht wie eine Glasscheibe bei geringsten Belastungen in tausend Einzelteile. Das Team um Michler hat nun gezeigt, dass sich diese Eigenschaften im Nanometerbereich ändern; der Physiker Fredrik Oestlund präparierte zu diesem Zweck eine Siliziumplatte mit einer Ionenfeinstrahlanlage (FIB für Focused Ion Beam), ein Gerät zur Oberflächenanalyse und -bearbeitung. Mit Hilfe von Gallium-Ionenstrahlen trug er ringförmig Schicht für Schicht der Platte ab, so dass winzige Säulen entstanden, deren Durchmesser zwischen 230 und 940 Nanometer betrugen.

Belastungsversuche mit einem Nanoindenter

"Unsere Säulen-Knick-Versuche gleichen im Prinzip den Versuchen Tetmejers. Nur sind unsere Säulen rund 100'000-mal kleiner", sagt Michler. Um sie zu belasten, kam ein Mikro- und Nanopräzisionswerkzeug, ein so genannter Nanoindenter, zum Einsatz. Eingespannt in ein Rasterelektronenmikroskop drückte die abgeflachte Spitze einer Diamantpyramide von oben in Längsrichtung auf die Säulen, die Kraft wurde dabei kontinuierlich gemessen. "Grössere" Säulen entwickelten unter Belastung Risse und zerbrachen in kleine Stücke, zeigten also das typisch spröde Verhalten.

Waren die Säulen jedoch schmaler als 400 Nanometer, blieb die Rissbildung aus; die Säulen begannen sich wie Metall plastisch zu verformen. Der Grund liegt in der inneren Struktur der Materie. Die Materialeigenschaften werden nicht durch die perfekte Anordnung der Atome bestimmt, sondern durch Fehler in dieser Anordnung. Sind die Säulen kleiner als der mittlere Abstand bestimmter Defekte in der regelmässigen Anordnung, können diese Säulen plötzlich leicht umgeformt werden. Die Ergebnisse publizierten Oestlund und Michler mit ihren Forschungspartnern von den Universitäten Uppsala und Minnesota vor kurzem in der renommierten Zeitschrift "Advanced Functional Materials".

Silizium mit metallischen Eigenschaften

"Die Erkenntnis ermöglicht es uns vielleicht, Silizium - wenn es nur klein genug ist - wie ein Metall in mechanischen Anwendungen zu verwenden", so Michler. Metallische Werkstoffe sind fehlertolerant und können beispielsweise Stösse durch Verformung absorbieren, ohne zu zerbrechen. Auch ist die Auslegung von Bauteilen mit spröden Materialien schwierig, da diese versagen, wenn die Spannungsintensität an einer Stelle mit einem Defekt zu gross wird. Da der genaue Ort und die Größe des kritischen Defekts nahezu immer unbekannt sind, kann die kritische Belastung fast nie genau ermittelt werden - dies ist wesentlich einfacher bei einem metallischen Werkstoff, der sich bei einer definierten Belastung verformt. Diese "gutmütigen" Eigenschaften der plastischen Verformung von Silizium öffnet der Uhren- und Halbleiterindustrie für das Design von mechanischen Mikro- und Nanosystemen ganz neue Perspektiven.

Weitere Informationen:
Dr. Johann Michler, Mechanics of Materials and Nanostructures, Tel. +41 33 228 46 05, johann.michler@empa.ch

Sabine Voser | idw
Weitere Informationen:
http://www.empa.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie