Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanosäulen: Von wegen spröde! Überraschendes Silizium

08.10.2009
Silizium, das wichtigste Halbleitermaterial überhaupt, gilt als spröde und brüchig wie Fensterglas. Im Nanometermassstab allerdings ändert der Werkstoff seine Eigenschaften.

Empa-Forscher erbrachten den Beweis, indem sie winzige Siliziumsäulen herstellten. Ist deren Durchmesser klein genug, brechen belastete Säulen nicht mehr wie grössere Siliziumstücke, sondern geben dem Druck nach und verformen sich plastisch, ähnlich wie metallische Werkstoffe. Diese Erkenntnis eröffnet dem Design von mechanischen Mikrosystemen und der Uhrenindustrie vollkommen neue Materialperspektiven.

Bereits Empa-Gründer Ludwig von Tetmajer hat sich mit der mechanischen Belastung von Säulen befasst. Er konnte nach dem Einsturz der Eisenbahnbrücke in Münchenstein durch Druckversuche im Labor zeigen, dass die Eulersche Knickformel für schlanke Stäbe nicht immer zutraf und korrigiert werden musste. "Wir machten das Gleiche 127 Jahre später, allerdings auf der Nanoskala, und erfuhren dabei Überraschendes: Anstatt knickenden, brüchigen Nano-Siliziumsäulen erlebten wir solche, die sich unter Druck ?wie Butter? plastisch verformen", erklärt Johann Michler, Leiter der Abteilung "Mechanics of Materials and Nanostructures" in Thun.

Silizium - der wichtigste Werkstoff der Halbleiterindustrie

Silizium ist das am häufigsten verwendete Grundmaterial in der Halbleiter- und Photovoltaikindustrie. Es dient als Ausgangsmaterial für elektronische Bauelemente wie Computerprozessoren und für viele Sensoren und mikromechanische Systeme, zum Beispiel für den Hebelarm in einem Rasterkraftmikroskop. Ausserdem sind über 90 Prozent der heutigen Solarzellen aus Silizium gefertigt.

Doch das Material hat seine Limiten, denn Silizium gilt als spröde: Ein Siliziumwafer - eine dünne Scheibe aus Silizium und Ausgangsmaterial für die vorgenannten Anwendungen - zerbricht wie eine Glasscheibe bei geringsten Belastungen in tausend Einzelteile. Das Team um Michler hat nun gezeigt, dass sich diese Eigenschaften im Nanometerbereich ändern; der Physiker Fredrik Oestlund präparierte zu diesem Zweck eine Siliziumplatte mit einer Ionenfeinstrahlanlage (FIB für Focused Ion Beam), ein Gerät zur Oberflächenanalyse und -bearbeitung. Mit Hilfe von Gallium-Ionenstrahlen trug er ringförmig Schicht für Schicht der Platte ab, so dass winzige Säulen entstanden, deren Durchmesser zwischen 230 und 940 Nanometer betrugen.

Belastungsversuche mit einem Nanoindenter

"Unsere Säulen-Knick-Versuche gleichen im Prinzip den Versuchen Tetmejers. Nur sind unsere Säulen rund 100'000-mal kleiner", sagt Michler. Um sie zu belasten, kam ein Mikro- und Nanopräzisionswerkzeug, ein so genannter Nanoindenter, zum Einsatz. Eingespannt in ein Rasterelektronenmikroskop drückte die abgeflachte Spitze einer Diamantpyramide von oben in Längsrichtung auf die Säulen, die Kraft wurde dabei kontinuierlich gemessen. "Grössere" Säulen entwickelten unter Belastung Risse und zerbrachen in kleine Stücke, zeigten also das typisch spröde Verhalten.

Waren die Säulen jedoch schmaler als 400 Nanometer, blieb die Rissbildung aus; die Säulen begannen sich wie Metall plastisch zu verformen. Der Grund liegt in der inneren Struktur der Materie. Die Materialeigenschaften werden nicht durch die perfekte Anordnung der Atome bestimmt, sondern durch Fehler in dieser Anordnung. Sind die Säulen kleiner als der mittlere Abstand bestimmter Defekte in der regelmässigen Anordnung, können diese Säulen plötzlich leicht umgeformt werden. Die Ergebnisse publizierten Oestlund und Michler mit ihren Forschungspartnern von den Universitäten Uppsala und Minnesota vor kurzem in der renommierten Zeitschrift "Advanced Functional Materials".

Silizium mit metallischen Eigenschaften

"Die Erkenntnis ermöglicht es uns vielleicht, Silizium - wenn es nur klein genug ist - wie ein Metall in mechanischen Anwendungen zu verwenden", so Michler. Metallische Werkstoffe sind fehlertolerant und können beispielsweise Stösse durch Verformung absorbieren, ohne zu zerbrechen. Auch ist die Auslegung von Bauteilen mit spröden Materialien schwierig, da diese versagen, wenn die Spannungsintensität an einer Stelle mit einem Defekt zu gross wird. Da der genaue Ort und die Größe des kritischen Defekts nahezu immer unbekannt sind, kann die kritische Belastung fast nie genau ermittelt werden - dies ist wesentlich einfacher bei einem metallischen Werkstoff, der sich bei einer definierten Belastung verformt. Diese "gutmütigen" Eigenschaften der plastischen Verformung von Silizium öffnet der Uhren- und Halbleiterindustrie für das Design von mechanischen Mikro- und Nanosystemen ganz neue Perspektiven.

Weitere Informationen:
Dr. Johann Michler, Mechanics of Materials and Nanostructures, Tel. +41 33 228 46 05, johann.michler@empa.ch

Sabine Voser | idw
Weitere Informationen:
http://www.empa.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics