Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanopartikel als Füllstoffe: Lacke werden umweltfreundlicher und bleiben kratzfest

20.04.2015

Lacke sind die nützlich-schöne Hülle vieler Produkte des täglichen Bedarfs. Schon ein dünner Film wirkt sich positiv auf Erscheinungsbild, Funktion und Lebensdauer aus – besonders gefragt bei Hölzern und Kunststoffen.

Das Problem in kommerziell erhältlichen Lacksystemen sind die oftmals enthaltenen, gesundheitlich bedenklichen flüchtigen Komponenten. Endverbraucher und Unternehmen verlangen daher zunehmend nach umweltfreundlichen, wasserbasierten Lacken. Dabei gilt es, flüchtige organische Anteile (VOC) zu vermeiden. Ein wesentlicher Nachteil der bislang erhältlichen wässrigen Lacksysteme ist deren geringe Kratzfestigkeit.


Visuelle Transparenzprüfung des neuen und umweltfreundlichen Lacks.


Synthese von Silika-Nanopartikeln und Größenverteilung.

Fotos: Fraunhofer LBF

Das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF erarbeitete daher im Rahmen eines über die AiF vom BMWi geförderten IGF-Vorhabens Lösungsansätze, welche die gesundheitlichen Risiken minimieren und gleichzeitig das Eigenschaftsprofil der Lacke erhalten.

Dem Institut ist es gelungen, verschiedene anorganische Nanopartikel als Füllstoffe für wässrige Polyurethan-Beschichtungen zu erstellen und zu modifizieren. Auf diese Weise konnten die Wissenschaftler die Kratzfestigkeit der fertigen Beschichtung erhöhen und gleichzeitig deren Transparenz und Glanz erhalten.

Marktübliche Binder für emissionsarme Lacke, die Kunden selbst mit einfacher Technik applizieren können, sind beispielsweise wässrige Dispersionen von Polyurethanpartikeln. Nach dem Anstrich verdunstet das Wasser und die eigentliche Lackschicht bleibt übrig. Damit nach dem Eintrocknen der Dispersion ein homogener und geschlossener Film entsteht, muss das Polymer weich genug sein, um bei moderaten Temperaturen zusammenzufließen. Das Problem: Diese Filmbildungseigenschaft steht im direkten Widerspruch zu einer geforderten Kratzfestigkeit.

Daraus entsteht die große Herausforderung, umweltfreundlichere Bindemittel auf Wasserbasis mit einer verbesserten Kratzfestigkeit unter einen Hut zu bekommen. Bislang gilt als Stand der Forschung, Silika-Partikel einzubringen. Hierbei werden oftmals in ihrer Form undefinierte pyrogene Kieselsäuren in den Lack eingearbeitet. Das kann zwar die Kratzfestigkeit verbessern, bringt jedoch massive Einbußen des Glanzes und der Transparenz mit sich.

Maßgeschneiderte Silikapartikel als Füllstoffe in Lacken

Wasserbasierte Holzbeschichtungen mit hohem Silika-Anteil neigen außerdem zum Vergrauen, was die Wirkung der natürlichen Holzmaserung trübt. Die im Fraunhofer LBF entwickelten Lackdispersionen können diese optischen Nachteile nun auf ein Minimum reduzieren. Hierzu stellt das Institut sphärische, oberflächenmodifizierte Silika-Partikel her. Um die Transparenz zu erhalten, wird die Partikelgröße dabei unter 50 Nanometer gehalten. So wird das Licht beim Durchstrahlen des Films nicht an dem anorganischen Material gestreut. Die Oberfläche wird zusätzlich mit funktionellen Gruppen versehen, die eine chemische Anbindung an die Lackmatrix ermöglichen.

Anders als in herkömmlichen Lacken werden die Partikel nicht nachträglich in das System eingerührt, sondern während der Synthese der Lackdispersion direkt an die Polymerpartikel kovalent gebunden. Diese Methode stellt eine gleichmäßige und agglomeratfreie Verteilung des anorganischen Materials im Bindemittel und im verfilmten Lack sicher.

Innerhalb der Beschichtung erzielen die Darmstädter Wissenschaftler auf diese Weise Silika-Gehalte von 20 Gewichtsprozent und erhalten dabei die Transparenz und den Glanz. Orientierende Untersuchungen bei den Projektpartnern, wie dem Institut für Lacke und Farben ILF in Magdeburg und dem Institut für Holztechnologie IHD in Dresden, zeigten eine verbesserte Kratzfestigkeit gegenüber unmodifizierten Lackdispersionen.

Über den Bereich Kunststoffe des Fraunhofer LBF

Mit dem Forschungsbereich Kunststoffe, hervorgegangen aus dem Deutschen Kunststoff-Institut DKI, begleitet und unterstützt das Fraunhofer LBF seine Kunden entlang der gesamten Wertschöpfungskette von der Polymersynthese über den Werkstoff, seine Verarbeitung und das Produktdesign bis hin zur Qualifizierung und Nachweisführung von komplexen sicherheitsrelevanten Leichtbausystemen. Der Forschungsbereich ist spezialisiert auf das Management kompletter Entwicklungsprozesse und berät seine Kunden in allen Entwicklungsstufen.

Hochleistungsthermoplaste und Verbunde, Duromere, Duromer-Composites und Duromer-Verbunde sowie Thermoplastische Elastomere spielen eine zentrale Rolle. Der Bereich Kunststoffe ist ein ausgewiesenes Kompetenzzentrum für Additivierungs-, Formulierungs- und Hybrid-Fragestellungen. Umfassendes Know-how besteht in der Analyse und Charakterisierung von Kunststoffen und deren Veränderung während der Verarbeitung sowie in der Methodenentwicklung zeitaufgelöster Vorgänge bei Kunststoffen.

Das Fraunhofer LBF entwickelt, bewertet und realisiert im Kundenauftrag maßgeschneiderte Lösungen für maschinenbauliche Komponenten und Systeme, vor allem für sicherheitsrelevante Bauteile und Systeme. Der Leichtbau steht dabei im Zentrum der Überlegungen. Neben der Bewertung und optimierten Auslegung passiver mechanischer Strukturen werden aktive, mechatronisch-adaptronische Funktionseinheiten entwickelt und proto-typisch umgesetzt.

Parallel werden entsprechende numerische sowie experimentelle Methoden und Prüftechniken vorausschauend weiterentwickelt. Die Auftraggeber kommen aus dem Automobil- und Nutzfahrzeugbau, der Schienenverkehrstechnik, dem Schiffbau, der Luftfahrt, dem Maschinen- und Anlagenbau, der Energietechnik, der Elektrotechnik, dem Bauwesen, der Medizintechnik, der chemischen Industrie und weiteren Branchen. Sie profitieren von ausgewiesener Expertise der rund 500 Mitarbeiter und modernster Technologie auf mehr als 11 560 Quadratmetern Labor- und Versuchsfläche an den Standorten Bartningstraße und Schlossgartenstraße.

Redaktion:
Anke Zeidler-Finsel
Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF
Institutsleiter (komm.): Prof. Dr.-Ing. Tobias Melz
Bartningstraße 47
64289 Darmstadt
Telefon +49 6151 705-268
www.lbf.fraunhofer.de 
anke.zeidler-finsel@lbf.fraunhofer.de

Weiterer Ansprechpartner Presseservice:
Peter Steinchen
Telefon +49 761 38 09 68-27
steinchen@solar-consulting.de
Solar Consulting GmbH

Wissenschaftlicher Kontakt:
Dr. Roland Klein
Telefon +49 6151 705-8611
roland.klein@lbf.fraunhofer.de
Fraunhofer LBF

Peter Steinchen | Solar Consulting GmbH

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit

21.08.2017 | Physik Astronomie

Ein neuer Indikator für marine Ökosystem-Veränderungen - der Dia/Dino-Index

21.08.2017 | Ökologie Umwelt- Naturschutz

Kieler Wissenschaft entwickelt exzellentes Forschungsdatenmanagement

21.08.2017 | Informationstechnologie