Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanomagnete aus der Röhre

08.07.2013
Ein Forscherteam des Leibniz-Instituts für Festkörper- und Werkstoffforschung Dresden hat magnetische Nanokristalle im inneren Hohlraum von Kohlenstoff-Nanoröhren gezüchtet.

Diese weisen drei Besonderheiten auf: (1) Die Größe der Kristalle lässt sich durch den Durchmesser der Nanoröhre kontrollieren. (2) Die Kristalle sind vor Oxidation geschützt. (3) Durch ihre Winzigkeit haben die Nanokristalle andere magnetische Eigenschaften. Um sie vollständig zu entmagnetisieren muss man ein Feld anlegen, das 30-mal stärker ist, als dies bei größeren Kristallen oder Schichten der Fall ist.


Mit Metallnanopartikeln gefüllte Kohlenstoffnanoröhren werden von einem Permanentmagneten am Boden eines Uhrglases festgehalten. Foto: IFW Dresden


Elektronenmikroskopische Aufnahmen von Nanokristallen (helle Punkte) im Innern einer Kohlenstoffnanoröhre. Foto: IFW Dresden

Im Zeitalter der Nanotechnologie sind die Wissenschaftler bestrebt, alles immer kleiner zu machen. Dabei sollen die chemischen und physikalischen Eigenschaften erhalten bleiben, die für die Funktionalität von Materialien und elektronischen Bauelementen wichtig sind. Manchmal ergeben sich aber durch den Übergang in die Nanometer-Bereich Änderungen, die ganz neue Funktionen ermöglichen. Am Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW) haben Forscher magnetischen Nanokristalle gezüchtet, die besonders stark und korrosionsbeständig sind.

Die neue Methode, die dabei angewandt wurde, besticht vor allem durch ihre Einfachheit und Eleganz. Die Metallsalze der Verbindungskomponenten Kobalt, Eisen und Gallium werden in Wasser gelöst. In dieser Lösung werden die Kohlenstoffnanoröhren bei moderaten Temperaturen behandelt und anschließend filtriert. Die mit der Lösung gefüllten Kohlenstoffnanoröhren werden dann getrocknet und unter Wasserstoffzufuhr zur Zielverbindung reduziert. Auf diese Weise entstehen kugelförmige, voneinander separierte Partikel, die wie eine locker gefädelte Perlenkette das Innere der Kohlenstoffnanoröhren ausfüllen.

Die Kohlenstoffnanoröhren dienen während der Synthese als Schablone für die Größe der Nanopartikel. Durch die Variation des Innendurchmessers der Kohlenstoffnanoröhren kann die Größe der entstehenden Nanopartikel kontrolliert werden. In den ersten Experimenten der Forscher betrug der Durchmesser der Partikel ca. 35 Nanometer was genau dem Innendurchmesser der Nanoröhren entspricht.

Nach vollendeter Synthese bilden die Kohlenstoffnanoröhren eine schützende Hülle gegen Korrosion und andere chemische Veränderungen. Die chemische Stabilität der von Kohlenstoffnanoröhren ummantelten Nanopartikel ist ein großer Vorteil, da Korrosion in metallischen Materialien immer ein Problem darstellt.

Genaue mikroskopische Untersuchungen der Nanopartikel zeigen, dass die neue Methode wohlgeordnete Kristallstrukturen hervorbringt. Hinsichtlich der magnetischen Eigenschaften zeigen diese Nanopartikel magnetische Koerzitivfeldstärken, die 30 mal größer sind als in makroskopisch großen Körnen desselben Materials. Die Koerzitivfeldstärke ist das Maß für die magnetische Feldstärke, die notwendig ist, um eine ferromagnetische Substanz vollständig zu entmagnetisieren. Je höher die Koerzitivfeldstärke, desto schwieriger ist es, den Magneten zu entmagnetisieren. Die enorme Steigerung der Koerzitivfeldstärke der Nanopartikel wird auf eine Veränderung der magnetischen Domänenstruktur zurückgeführt. Während Massivmaterial und dünne Schichten Bereiche unterschiedlicher Magnetisierung ausbilden, sogenannte Domänen, weisen die Nanopartikel auf Grund ihrer geringen Größe nur wenige Domänen aus oder sind sogar ein-domänig.

Die Kobalt-Eisen-Gallium-Verbindung Co2FeGa gehört zur Klasse der sogenannten Heusler-Verbindungen. Das sind Verbindungen aus drei Elementen, die häufig halbleitend oder magnetisch sind. Benannt sind sie nach Fritz Heusler, der diese Verbindungsklasse 1903 entdeckte. Das Besondere an der ersten entdeckten Heusler Verbindung, dem Cu2MnAl war, dass sie magnetisch ist, obwohl sie aus den nichtmagnetischen Elementen Kupfer, Mangan und Aluminium besteht. In jüngster Zeit rücken Heusler-Verbindungen verstärkt in den Fokus der Forschung, da sie elektronische und magnetische Eigenschaften haben, die für Anwendungen der Thermoelektrik und Spintronik interessant sind. Am IFW Dresden beschäftigt sich eine Nachwuchsforschergruppe intensiv mit diesem Thema. Das hier beschriebene Verfahren, Heusler-Verbindungen in Kohlenstoffnanoröhren zu züchten, stellt eine echte Alternative dar, neue korrosionsbeständige Magnetmaterialien für verschiedene Anwendungen z.B. als Permanentmagnet oder für neue Formen von Elektronik herzustellen.

Die Ergebnisse sind in der Zeitschrift „Crystal Growth & Design“ veröffentlicht: M. Gellesch, M. Dimitrakopoulou, M. Scholz, C. G. F. Blum, M. Schulze, J. van den Brink, S. Hampel, S. Wurmehl, B. Büchner: Facile nanotube-assisted synthesis of ternary intermetallic nanocrystals oft he ferromagnetic heusler phase Co2FeGa, Crystal Growth & Design, 2013, 13 (7), pp 2707–2710, DOI: 10.1021/cg400405k

Pressekontakt:

Dr. Sabine Wurmehl
Tel. 0351 5659 519
s.wurmehl@ifw-dresden.de
Dr. Silke Hampel
Tel. 0351 5659 323
s.hampel@ifw-dresden.de
Dr. Carola Langer
Referentin des Wissenschaftlichen Direktors
Tel. 0351 4659-234
c.langer@ifw-dresden.de

Dr. Carola Langer | Leibniz-Institut
Weitere Informationen:
http://www.ifw-dresden.de/de/presse-und-events/pressemitteilungen/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen