Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanodiamanten als Bakterienkiller

10.06.2014

Materialwissenschaftler aus Bremen und Stanford identifizieren Nanodiamanten als effektive Bakterienkiller. Über ihre Forschungsergebnisse haben sie einen Beitrag in der Fachzeitschrift „ACS Nano“ veröffentlicht.

Nanodiamanten sind mit einem Durchmesser von 5 Nanometern etwa 200-mal kleiner als ein Bakterium und werden durch Explosion von kohlenstoffhaltigen Verbindungen in Hochdruckbehältern hergestellt. Neben Ruß entstehen bei der Explosion auch die winzigen Explosionsdiamanten.


Die farbigen Partikel symbolisieren unterschiedliche Nanodiamanttypen, die an Bakterienzellen (grau) binden und diese töten. Foto: Rezwan

Die Bremer Materialwissenschaftler Dr. Michael Maas, Julia Wehling und Professor Kurosch Rezwan identifizierten jetzt in enger Zusammenarbeit mit Wissenschaftlern der Stanford Universität (USA) und der Universität Bremen die stark antibakteriellen Eigenschaften dieser Nanodiamanten. Neben Silber und Kupfer könnten die Diamanten als neues effektives Mittel gegen bakteriellen Befall und Infektionen eingesetzt werden.

Nanodiamanten wurden bereits in den 1960er Jahren von russischen Wissenschaftlern entdeckt, doch erst vor wenigen Jahren gelang der Durchbruch in der Aufbereitung der Diamanten, so dass diese im Labor nutzbar geworden sind. Das gräulich braune Diamantpulver kann durch unterschiedliche Hitzebehandlungen so verändert werden, dass verschiedene chemische Gruppen auf der Oberfläche der Diamanten entstehen.

Die Biologin Julia Wehling und der Chemiker und Projektleiter Dr. Michael Maas fanden heraus, dass einige dieser Diamanten innerhalb kürzester Zeit Vertreter der beiden wichtigsten Bakterienklassen töten. In einer spannenden Suche kamen die beiden Wissenschaftler des von Professor Kurosch Rezwan geleiteten Fachgebiets Keramische Werkstoffe und Bauteile (Advanced Ceramics) im Fachbereich Produktionstechnik der Universität Bremen Schritt für Schritt dem möglichen Grund für die antibakteriellen Eigenschaften auf die Spur: Bestimmte sauerstoffhaltige Gruppen an den Oberflächen der Nanodiamanten, sogenannte Säureanhydride, scheinen für die antibakterielle Wirkung der Diamanten verantwortlich zu sein.

„Die Erkenntnis, dass Nanodiamanten ähnlich effektiv Bakterien töten wie das seit über 7000 Jahren verwendete Silber eröffnet eine Vielzahl von Anwendungsmöglichkeiten im Bereich der Medizintechnik und Materialwissenschaften. Gleichzeitig ist belegt, dass die in der getesteten Konzentration verwendeten Nanodiamanten nicht toxisch für menschliche Zellen sind. So sind Beschichtungen von Oberflächen denkbar oder der Zusatz von Nanodiamanten zu Desinfektionsmitteln. Im Zeitalter der Antibiotikaresistenzen ist das Auffinden eines neuen antibakteriellen Materials gleichzusetzen mit einem Durchbruch“ betont Julia Wehling die Bedeutung der Entdeckung.

Auf die noch wenig erforschten Nanodiamanten aufmerksam geworden war Projektleiter Dr. Michael Maas bei einem Besuch an der Stanford Universität in Kalifornien im Gespräch mit Professor Richard N. Zare. „Nach meiner Rückkehr haben wir damit begonnen Nanodiamanten in den verschiedenen Nanosystemen, die wir in Bremen untersuchen, einzusetzen. Wir waren selbst überrascht wie effizient Nanodiamanten Bakterien töten und sind überzeugt mit der Entdeckung den Grundstein für viele weitere Forschungen gelegt zu haben.

Es liegt auf der Hand, dass dieses Nanomaterial in Zukunft eine wichtige Rolle in unterschiedlichsten Bereichen spielen wird, die von bakteriellem Befall betroffen sind. Unser nächstes Ziel ist es, Implantatmaterialien mit Nanodiamanten zu versetzen und diese somit mit antibakteriellen Eigenschaften auszustatten. Parallel dazu soll eine weitere Charakterisierung der Nanodiamantenoberfläche durchgeführt werden.“

Auch Professor Kurosch Rezwan als Leiter des Fachgebiets Advanced Ceramics an der Uni Bremen ist begeistert von der antibakteriellen Wirkung der Diamanten und betont, wie wichtig die hervorragende Zusammenarbeit mit der von Professor Ralf Dringen geleiteten Arbeitsgruppe Neurobiochemie und Biomolekulare Interaktionen der Universität Bremen und Professor Richard N. Zare vom Department of Chemistry der Stanford Universität an der Publikation für die renommierte Fachzeitschrift „ACS Nano“ gewesen ist.

Vollständiger Titel des Fachartikels:
Julia Wehling, Ralf Dringen, Richard N. Zare, Michael Maas, Kurosch Rezwan: Bactericidal Activity of Partially Oxidized Nanodiamonds, ACS Nano, 2014, http://pubs.acs.org/doi/abs/10.1021/nn502230m.

Weitere Informationen:

Universität Bremen
Fachbereich Produktionstechnik
Keramische Werkstoffe und Bauteile / Advanced Ceramics

M.Sc. Julia Wehling
Tel.: +49 421 218 64966
E-Mail: julia.wehling@uni-bremen.de

Dr. rer. nat. Michael Maas
Tel.: +49 421 218 64939
E-Mail: michael.maas@uni-bremen.de

Prof. Dr.-Ing. Kurosch Rezwan
Tel.: +49 421 218 64930
E-Mail: krezwan@uni-bremen.de

http://www.ceramics.uni-bremen.de

Eberhard Scholz | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Clevere Folien voller Quantenpunkte
27.03.2017 | Technische Universität Chemnitz

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE