Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Nano-Cellulose zu neuartigen Verbundwerkstoffen

24.10.2011
Seit längerem steht Nano-Cellulose als neuartiges Biomaterial im Fokus von Wissenschaft und Industrie. Die Einsatzmöglichkeiten reichen von der Werkstoff- und Medizinaltechnik bis hin zur Lebensmittel- und Pharmaindustrie.

Empa-Forschende entwickelten nun ein Herstellungsverfahren für Nano-Cellulosepulver, aus dem sich Polymerverbundwerkstoffe herstellen lassen, die beispielsweise als Leichtbauwerkstoff im Automobilbau oder als Membran- oder Filtermaterial in der Biomedizin Verwendung finden könnten.

Cellulose ist ein nahezu unerschöpfliches Biopolymer aus langen Glukoseketten mit einzigartigen Struktureigenschaften. Sie dient Pflanzen in deren Zellwänden als Gerüst, als eine Art Skelett. Cellulose ist extrem zugfest, lässt sich vielseitig chemisch modifizieren – und dadurch in ihren Eigenschaften verändern – und ist biologisch abbaubar.

Auf der Suche nach neuartigen Polymerwerkstoffen mit bestimmten erwünschten Eigenschaften entwickeln die Materialwissenschaftler etwa Hochleistungsverbundwerkstoffe (Komposite), in denen Nanofasern aus Cellulose in Polymere eingebettet sind: als Leichtbauverbundstoffe mit ähnlichen mechanischen Eigenschaften wie Stahl sowie als nanoporöse “Bio“-Schaumstoffe, um herkömmliche Isolationsschäume zu ersetzen.

Der ideale Leichtbauwerkstoff

Klassische Cellulosechemie im Industriemassstab wird vor allem für die Zellstoff-, Papier- und Faserherstellung eingesetzt. Die Forschung konzentriert sich derzeit darauf, Cellulose in Form von Nanofasern zu isolieren und zu charakterisieren. So genannte Nano-Cellulose besteht aus Fasern oder Kristallen mit einem Durchmesser von weniger als 100 Nanometern. Daraus, so die Materialwissenschaftler, lassen sich neue Materialien gestalten, die bei geringem Gewicht eine hohe mechanische Stabilität aufweisen. Kurz: der ideale Leichtbauwerkstoff.

Die Cellulose-Experten der Empa-Abteilung «Holz» isolieren Cellulose-Nanofasern aus Zellstoff; diese sind mehrere Mikrometer lang, aber nur wenige Nanometer dünn. Die Nanofasern sind untereinander stark vernetzt und haben eine extrem grosse Oberfläche, über die sie mit Substanzen wie Wasser, aber auch anorganischen, organischen und polymeren Verbindungen chemisch-physikalisch interagieren kann. Cellulose-Nanofasern lassen sich daher als stabile und äusserst reaktive, zudem biologisch erzeugte und abbaubare Ausgangsstoffe für einen technischen Einsatz nutzen, etwa zum Verstärken von (Bio)-Polymeren als viel versprechender umweltverträglicher Leichtbauwerkstoff im Automobilbau, aber auch als Membran- oder Filtermaterial in Verpackungs- oder biomedizinischen Anwendungen.

Chemische Modifizierung ist die Lösung

Die aus Zellstoff isolierte Nano-Cellulose liegt zunächst als wässrige Suspension vor. Trocknet sie, verhornt das Material, indem die Cellulosefasern miteinander «verkleben» – und verliert seine herausragenden mechanischen Eigenschaften. Daher wollten die Empa-Forschenden ein Verfahren entwickeln, mit dem sich Nano-Cellulose trocknen lässt, ohne dass sie verklumpt und verhornt. Die Cellulose wurde dafür mit einer industriell leicht umsetzbaren und selbst für Lebensmittelanwendungen unbedenklichen Methode chemisch modifiziert; dies verhindert, dass sich die Cellulosefibrillen aneinander lagern und miteinander verkleben.

Das Resultat kann sich sehen lassen: Das getrocknete Nano-Cellulosepulver glänzte nach der Redispergierung in Wasser mit den gleichen Eigenschaften wie nicht modifizierte Cellulose, die vorher nicht getrocknet wurde. Damit ist das Nano-Cellulosepulver für die Synthese von Bio-Nanokompositmaterialien eine attraktive Alternative zu konventionellen Cellulose-Suspensionen. Diese bestehen zu über 90 Prozent aus Wasser – was die Transportkosten explodieren lässt und die Gefahr eines Abbaus durch Bakterien oder Pilze erhöht. Zudem sind wässrige Cellulose-Suspensionen aufwändig zu verarbeiten, da im Verlauf von chemischen Prozessen meist die Lösemittel ausgetauscht werden müssen.

Empa-Forschungspreis 2011 an Christian Eyholzer

Die Arbeiten zum neuen Herstellungsverfahren und zu Anwendungen der Nano-Cellulose in unterschiedlichen Biopolymeren wurden vor kurzem mit dem Empa-Forschungspreis 2011 ausgezeichnet. In einer Zusammenarbeit mit der schwedischen «Luleå University of Technology» verstärkten der Empa-Forscher und Doktorand Christian Eyholzer und seine KollegInnen Klebstoffe, Hydrogele und biologisch abbaubare Kunststoffe mit dem neuartigen Nano-Cellulosepulver. Nach Abschluss seiner Dissertation hat Eyholzer die Empa verlassen und arbeitet derzeit bei der Sika als Projektleiter in der Produktentwicklung.

Weitere Informationen
Dr. Tanja Zimmermann, Abteilung «Holz», Tel. +41 58 765 41 15, tanja.zimmermann@empa.ch

Sabine Voser | EMPA
Weitere Informationen:
http://www.empa.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fraunhofer IFAM erweitert den Forschungsbereich »Beschichtungen für Bewuchs- und Korrosionsschutz«
11.01.2017 | Fraunhofer IFAM

nachricht Schrauben mit Köpfchen
10.01.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik