Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Musterkristalle in der Muschel

04.11.2014

Die große Steckmuschel nutzt für das Wachstum ihrer Kalzitschale physikalische Gesetze, die aus der Optimierung von Stählen bekannt sind

Muscheln sind wahre Meister der Biomineralisation. Nicht nur, dass sie aus einfachen Substanzen besonders harte und feste Verbundwerkstoffe für ihre Schalen bilden. Das Material entsteht auch auf vorbildhafte Weise.


Eine Schale wie aus dem Lehrbuch: Die Kalzit-Kristalle in der prismatischen Schicht der Großen Steckmuschel wachsen so, wie es Theorien der Materialphysik für das Kristallwachstum in nicht-biologischen Systemen vorhersagen. Daraus schließen die Potsdamer Max-Planck-Forscher, dass die Muschel nur die physikalischen Randbedingungen vorgibt, die Bildung der Mikrostruktur darüber hinaus aber nicht beeinflusst.

© Andreas Hoffmann


Eingefrorenes Kristallwachstum: In dem 3D-Profil der prismatischen Schicht, das die Max-Planck-Forscher mithilfe der hochauflösenden Mikrotomografie erstellten, ist zu erkennen, wie sich die Kristalle entwickeln. Das obere Ende bildet die Mikrostruktur zu Beginn des Wachstums ab. Je dicker die Schicht wird, desto größer werden die türkis-farbenen Kristallite, während die violetten allmählich verschwinden – die Struktur vergröbert sich.

© MPI für Kolloid- und Grenzflächenforschung

Das hat ein deutsch-französisches Team um Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam-Golm herausgefunden, als sie die Schale der großen Steckmuschel Pinna nobilis untersuchten und dabei erstmals ein genaues Bild des Kristallwachstums erhielten. Demnach entwickeln sich die Kalzit-Kristalle in der äußeren prismatischen Schicht der Schale genauso, wie es auch bei Körnern in Metallen und Legierungen beobachtet und durch Theorien beschrieben wird. Dabei werden einige große Kristallite immer größer und verdrängen allmählich kleinere Kristallkörner.

Mit dieser Erkenntnis wird klar, dass die Muschel als lebender Organismus auf ähnliche Prozesse zurückgreift, wie sie auch zur Optimierung von Stählen verwendet werden. Denn sie muss nur die thermodynamischen Rahmenbedingungen wie die Temperatur und die Konzentration der Ausgangsstoffe für das Wachstum der Kalzit-Kristalle vorgeben, den Prozess darüber hinaus aber nicht beeinflussen.

Die Evolution hat eine Vielzahl biologischer Materialien hervorgebracht – eine Schatztruhe für die Wissenschaft. Diese natürlichen Materialen besitzen oft außergewöhnliche mechanische Eigenschaften und sind optimal an ihre Aufgaben angepasst. Dabei verwenden Lebewesen für die Materialien, die ihnen Halt und Schutz bieten oder als Jagdwaffen dienen, nur eine begrenzte Zahl chemischer Elemente.

Doch was ihnen an chemischer Vielfalt fehlt, machen sie durch raffinierte Strukturen wett. Muschelschalen sind dafür hervorragende Beispiele: Sie bestehen hauptsächlich aus hartem, aber sprödem Kalzit, nichts anderem also als Calciumcarbonat, das als Kalk die Waschmaschine lahmlegen kann. Doch die Muschel verklebt die Kalzit-Kristalle mit einem Protein.

So bildet sie nicht nur das schillernde Perlmutt, mit dem sie die Innenseite ihrer Schale auskleidet, sondern auch die Prismenschicht, die den Großteil der Schale ausmacht und deutlich stabiler ist als reiner Kalzit gleicher Dicke. Wissenschaftler um Igor Zlotnikov und Peter Fratzl vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung haben nun Details aufgedeckt, wie die Kalzit-Kristalle in der Prismenschicht wachsen.

Eine Kalzit-Säule wird zum versteinerten Film der wachsenden Kristalle

Das deutsch-französische Forscherteam hat nun die Prismenschicht von Pinna nobilis mithilfe der hochaufgelösten Mikrotomographie analysiert: Mit der besonders intensiven Röntgen-Strahlung der European Synchrotron Radiation Facility (ESRF) fertigten die Wissenschaftler in einer Art Computertomografie, wie man sie aus der Medizin kennt, ein mikroskopisches 3D-Profil der Kalzit-Schicht an. So erkannten die Wissenschaftler in der Prismenschicht Strukturdetails von der Größe weniger Mikrometer. Demnach ähnelt die Anordnung der meist sechseckigen Kristallite von oben betrachtet einer verzerrten Honigwabe. Je tiefer man in die Schicht blickt, desto größer wird der durchschnittliche Durchmesser der Prismen – die Mikrostruktur vergröbert sich.

Dabei zeichnen die Kalzit-Säulen das Wachstum der Kristallite wie in einer Art versteinertem Film auf: Da die Kristallite nur an ihrem unteren Ende wachsen, bildet das obere Ende ab, wie groß die Kristallkörner zu Beginn des Wachstums waren und wie sie sich anfangs verteilten. Durch die Prismenschicht lässt sich dann verfolgen, wie sich deren Mikrostruktur, also die Größe und Verteilung der Kalzit-Kristalle während des Wachstums ändert. „In der Prismenschicht können wir die Bildung und Entwicklung der einzelnen Kristallkörner genau studieren“, sagt Igor Zlotnikov, der die Studie leitete. „Und sie liefert uns ein Musterbeispiel für das Kornwachstum von Kristallen.“ Denn die Kalzit-Kristalle wachsen in der Schale der Muschel genauso, wie es die Theorie aus den Materialphysik-Lehrbüchern vorhersagt.

Ihre Beobachtungen überraschten die Wissenschaftler in mehrfacher Hinsicht. Zum einen ließ sich das Wachstum von Kristallkörnern bislang nicht im Detail verfolgen. Daher simulierten Materialwissenschaftler den Vorgang bisher vor allem am Computer, um sich ein Bild davon zu machen. Zum anderen war nicht zu erwarten, dass Kalzit-Kristalle auch unter der Ägide der Muschel genauso wachsen, wie in Stählen oder Aluminiumlegierungen. Vielmehr war zu erwarten, dass die Muschel das Wachstum stärker steuert und daher auch die Kristallite anders aussehen als unter anorganischen Bedingungen.

Die physikalischen Bedingungen beschränken die Vielfalt biologischer Strukturen

„Die Bildung der Schale kann somit durch thermodynamische Modelle beschrieben werden“, sagt Igor Zlotnikov. Diese Modelle berücksichtigen alleine die chemischen und physikalischen Randbedingungen für das Kristallwachstum und würden den Prozess nicht richtig erfassen, wenn die Muschel die Größe und Verteilung der Kristallite beeinflusste. „Die Muschel beeinflusst den Wachstumsprozess offenbar aber nur insofern, als sie die thermodynamischen Randbedingungen, also die Temperatur, den pH-Wert und die Konzentration der Ausgangsstoffe festlegt“, erklärt Zlotnikov.

„Diese Beobachtung deckt sich genau damit, was wir von der Entwicklung der Mikrostruktur in anorganischen polykristallinen Systemen erwarten“, so Igor Zlotnikov. „Unsere Resultate zeigen, wie Organismen die physikalischen Gegebenheiten nutzen, um komplexe Formen zu schaffen. Und sie helfen uns zu verstehen, welche Umgebungsbedingungen die Formen von Mineralien biologischen Ursprungs bestimmen.“ Wie Organismen die Struktur von Biomineralien über die thermodynamischen Randbedingungen steuern und welchen Spielraum sie dabei nutzen, um vielfältige Materialien zu erzeugen, wollen die Forscher um Igor Zlotnikov unter Ausnutzung der natürlichen Diversität nun weiter ausloten. Zu diesem Zweck werden sie in ihren nächsten Arbeiten untersuchen, mithilfe welcher Prinzipien andere Muschelarten die Mikrostruktur ihrer Schalen steuern.

Im Gegensatz zu den meisten Untersuchungen, die Forscher aus der Abteilung von Peter Fratzl an Biomaterialien vornehmen, dienen die Erkenntnisse aus der aktuellen Studie weniger dazu, neuartige, technische Werkstoffe zu entwickeln. In diesem Fall war es gerade umgekehrt. Die Theorien zum Kornwachstum wurden in der Werkstoffforschung aufgestellt und tragen etwa dazu bei, die Eigenschaften von Stählen zu verfeinern. Die Erkenntnisse aus der Technik haben den Potsdamer Max-Planck-Forschern nun geholfen, einen biologischen Vorgang besser zu verstehen. Denn die Muschel nutzt Prinzipien aus der Physik für ihre eigenen Zwecke, nämlich um die Struktur ihrer Schale zu erzeugen.


Ansprechpartner

Prof. Dr. Peter Fratzl
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9401
Fax: +49 331 567-9402
E-Mail: gabbe@mpikg.mpg.de

Dr. Igor Zlotnikov
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9453
E-Mail: igor.zlotnikov@mpikg.mpg.de

Katja Schulze
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9203
Fax: +49 331 567-9202
E-Mail: katja.schulze@mpikg.mpg.de


Originalpublikation
Bernd Bayerlein, Paul Zaslansky, Yannicke Dauphin, Alexander Rack, Peter Fratzl und Igor Zlotnikov

Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth

Nature Materials, online veröffentlicht, 19. Oktober 2014; DOI: 10.1038/NMAT4110

Prof. Dr. Peter Fratzl | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8728047/muschelschale_mikrostruktur_kornwachstum

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen