Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Multi-Spitzen-Rastertunnelmikroskop liefert neuen Wert für den Oberflächenwiderstand von Silizium

04.08.2015

Silizium ist das mit Abstand am weitesten verbreitete Material in der Halbleiterindustrie. Doch seine elektronischen Eigenschaften sind immer noch nicht vollständig erforscht. An seiner Oberfläche leitet es den elektrischen Strom bis zu tausendmal besser als im Inneren. Wie gut genau, haben Jülicher Wissenschaftler nun mit bislang unerreichter Genauigkeit erfasst. Für ihre Messung der Oberflächenleitfähigkeit verwendeten sie ein speziell ausgerüstetes Rastertunnelmikroskop mit vier Spitzen. Der ermittelte Wert steht im Einklang mit aktuellen Ergebnissen, während ältere Messungen sich um mehrere Größenordnungen voneinander unterschieden.

Wie viele andere Materialien auch, weist Silizium an seiner Oberfläche ganz besondere Eigenschaften auf. Sie gewinnen umso mehr an Bedeutung, je kleiner der Körper wird. Denn die Oberfläche wird dann im Verhältnis zum Gesamtvolumen immer größer. Aus diesem Grund rücken die speziellen Eigenschaften der Oberfläche insbesondere in der Nano- und Halbleitertechnologie in den Fokus, bei denen der Trend zu immer kleineren Elektronikbauteilen führt.


Multi-Spitzen-Mikroskop zur Messung elektronischer Eigenschaften

Copyright: Forschungszentrum Jülich


Rastertunnelmikroskop-Aufnahme der (7x7)-Oberfläche von Silizium

Copyright: Forschungszentrum Jülich

„Bisher hat man Oberflächenstrukturen im Nanobereich in erster Linie nur abgebildet. Aber ich bin fest überzeugt davon, dass es in Zukunft immer wichtiger wird, nicht nur die Struktur, sondern auch die elektronischen Eigenschaften der Oberfläche zu erfassen“, betont Bert Voigtländer, Professor am Jülicher Peter Grünberg Institut (PGI-3).

Doch die Messung der grundlegenden elektronischen Oberflächeneigenschaft, der Oberflächenleitfähigkeit, ist alles andere als einfach. Bislang war es kaum möglich, den gemessenen elektrischen Strom, der über die Oberfläche fließt, sauber vom Stromfluss durch das Innere des Materials zu trennen. Entsprechend stark streuten die Messergebnisse in den letzten 20 Jahren. Die ermittelten Werte für die sogenannte (7x7)-Oberfläche von Silizium wichen um bis zu vier Größenordnungen voneinander ab.

Bei dieser vielfach wissenschaftlich untersuchten Oberflächenstruktur ordnen sich die Atome am Rand des Siliziumkristalls aufgrund der nach außen hin abgeschnittenen Bindungen in einem Muster aus dreieckigen Zellen an.

Mithilfe eines neuen Instruments konnten die Jülicher Wissenschaftler nun mit bislang unerreichter Genauigkeit messen, dass die Leitfähigkeit dieser Schicht etwa tausendmal höher ist als die einer entsprechenden Schicht im Innern des Siliziumkristalls. Die von ihnen ermittelte Oberflächenleitfähigkeit von 9 Mikrosiemens liegt in etwa in der Mitte zwischen typischen Werten für Halbleiter und Metalle. Das Ergebnis deutet in die gleiche Richtung wie die letzten Ergebnisse, die Forschungsgruppen in den Jahren 2009 und 2014 veröffentlicht hatten.

Neues Multimeter für die Nanowelt

Für ihre Experimente verwendeten die Wissenschaftler um Bert Voigtländer ein Rastertunnelmikroskop mit mehreren Spitzen, das sie speziell für die Messung der elektronischen Eigenschaften entwickelt haben. „Man kann sich das vorstellen wie ein Multimeter, also ein Gerät zur Strom- und Spannungsmessung, nur auf der Nanoskala“, erläutert Voigtländer. In der Ausgründung mProbes arbeitet Voigtländer nun daran, die Jülicher Erfindung auch anderen Forschungsgruppen zugänglich zu machen.

Dieses Multispitzen-Mikroskop bringt mithilfe spezieller vibrationsarmer Nanomotoren, der sogenannten KoalaDrives, vier Messspitzen auf engstem Raum zusammen. Während bei einem Zweispitzen-Instrument immer auch die elektrischen Widerstände an den Kontaktstellen mitgemessen werden, lässt sich mit vier Spitzen die Leitfähigkeit ermitteln, ohne dass die Kontaktwiderstände der Elektroden das Ergebnis verfälschen. Der Auswertung der Messdaten legten die Forscher ein neu entwickeltes Modell zugrunde, welches nicht nur zwischen der Stromleitung über die Oberfläche und im Inneren unterscheidet, sondern daneben auch verzweigte Übertragungswege über mehrere Schichten hinweg berücksichtigt.

„Die Analyse-Methode, die wir entwickelt haben, lässt sich auch auf verschiedenste andere Systeme in der Nanoelektronik anwenden. Mithilfe unseres Ansatzes wird es beispielsweise möglich, Leckströme, die in elektronischen Bauelementen ungewollt über die leitfähigen Oberflächen fließen, exakt zu berechnen. So lassen sich deren negative Auswirkungen auf die Effizienz der Bauteile schon in der Entwicklungsphase mit berücksichtigen und so weit wie möglich minimieren. Andererseits könnten Oberflächen aber auch gezielt als zusätzliche leitfähige Kanäle genutzt werden“, erläutert Sven Just, Doktorand am Jülicher Peter Grünberg Institut. Die präzise Messtechnik schafft auch neue Möglichkeiten für den Bau von Sensoren, etwa zum Nachweis von Gasen, die im Kontakt mit der Oberfläche deren Leitfähigkeit beeinflussen.

Als nächstes Ziel haben die Forscher nun die Untersuchung von topologischen Isolatoren im Visier: Die Materialklasse gilt aufgrund ihrer ungewöhnlichen Eigenschaften als Top-Kandidat für neuartige nanoelektronische Bauelemente der Zukunft. Entsprechende Materialien verhalten sich im Innern wie ein elektrischer Isolator, der den Strom nicht leitet, während sie den elektrischen Strom an ihrer Oberfläche ähnlich gut leiten wie ein elektrischer Leiter, was die Tür zu neuen Anwendungen in der Informationsverarbeitung und Sensorik öffnen könnte.

Originalpublikation:
Surface and Step Conductivities on Si(111) Surfaces
Sven Just, Marcus Blab, Stefan Korte, Vasily Cherepanov, Helmut Soltner, Bert Voigtländer
Phys. Rev. Lett. 115, 066801 (2015) – Published 3 August 2015
Artikel: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.066801#fulltext

Weitere Informationen:
Peter Grünberg Institut, Functional Nanostructures at Surfaces (PGI-3): http://www.fz-juelich.de/pgi/pgi-3/EN/UeberUns/Organisation/Gruppe2/KoalaDrive/_...
Ausgründung mProbes: http://www.mprobes.com/index.html

Ansprechpartner:
Sven Just, Peter Grünberg Institut, Functional Nanostructures at Surfaces (PGI-3)
Tel. 02461 61-6536
s.just@fz-juelich.de

Prof. Bert Voigtländer, Peter Grünberg Institut, Functional Nanostructures at Surfaces (PGI-3)
Tel.: 02461 61-4116
b.voigtlaender@fz-juelich.de

Pressekontakt:
Tobias Schlößer, Unternehmenskommunikation
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-08-04prl-si...

Tobias Schlößer | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie