Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Vermessungsarbeit

16.11.2009
Erstmals ist es gelungen, die Elektronendichte in einzelnen Molekülzuständen mit Hilfe des sogenannten photoelektrischen Effekts zu vermessen.

Diese jetzt in SCIENCE veröffentlichte Methode bietet eine wichtige Grundlage für die Entwicklung organischer Halbleiterelemente. Entscheidend für den Erfolg des vom Wissenschaftsfonds FWF unterstützten Projektes war die mathematische Transformation der Messdaten. Erst diese erlaubte die Interpretation der Elektronenverteilung und damit Rückschlüsse auf mögliche Eigenschaften organischer Halbleiterelemente.

Ultradünne Schichten aus organischen Molekülen bilden die Grundlage für zukünftige Halbleitertechnologien. Denn die hohe Flexibilität der organischen Moleküle erlaubt völlig neue Einsatzmöglichkeiten. Biegsame Bildschirme werden ebenso möglich wie kostengünstige Solarzellen. Doch vor dem alltagstauglichen Einsatz organischer Halbleiter gilt es die Wechselwirkungen zwischen organischem Material und anorganischen Trägersubstanzen besser zu verstehen. Einem Team der Universitäten Graz und Leoben gelang es nun, eine wichtige Methode für diesen Zweck zu entwickeln.

DICHT AN DICHT
"Die Eigenschaften eines organischen Moleküls werden ganz wesentlich von bestimmten Elektronenzuständen definiert", erklärt DI Dr. Peter Puschnig vom Lehrstuhl für Atomistic Modelling and Design of Materials der Montanuniversität Leoben, der die Untersuchung leitete. "Können wir die Verteilung der Elektronen im Molekül akkurat bestimmen, dann verstehen wir auch die Funktionsweise von organischen Halbleiterbauelementen besser und können deren Effizienz steigern." Bisher fehlte es jedoch an leistungsstarken Methoden, um ebendiese Elektronenverteilung zu messen. Doch nun gelang dem Team um Dr. Puschnig ein wesentlicher Fortschritt.

Das Team nutzte dazu den sogenannten photoelektrischen Effekt. Dieser erlaubt es, einzelne Elektronen aus organischen Molekülen "herauszuschlagen". Im konkreten Projekt wurde ein organisches Molekül mit ultraviolettem Licht bestrahlt, dessen Energie stark genug war, einzelne Elektronen aus den Molekülen herauszulösen. Die Richtung und Geschwindigkeit der so freigesetzten Elektronen wurde anschließend mit hochsensiblen Detektoren gemessen und lieferte die grundlegenden Daten zur Berechnung der Elektronenverteilung im Molekül. Dabei arbeitete das Team um Prof. Michael Ramsey von der Universität Graz an einer Schicht von Hexaphenyl, die in einer Dicke von nur einem Molekül auf eine Kupferoberfläche aufgebracht worden war. Die eigentlichen Messungen wurden vom Grazer Teil des Teams an der Berliner Synchrotronstrahlungsquelle BESSY (Berliner Elektronen-Speicherring Gesellschaft für Synchrotronstrahlung) durchgeführt.

DAMIT GERECHNET
Zu der Auswertung der so gewonnenen Daten meint Dr. Puschnig: "Es zeigte sich eine ganz charakteristische Verteilung der emittierten Elektronen. Die Interpretation dieser Verteilung gestaltete sich allerdings zunächst schwierig, und eine Verknüpfung der Messdaten mit der ursprünglichen Elektronenverteilung im Molekül schien unmöglich." Erst spezielle mathematische Transformationen (Fourier-Transformation) zeigten, dass die gemessene Elektronenverteilung jener entsprach, die im Molekül vorliegt. Da diese durch Berechnungen im Rahmen der Dichtefunktionaltheorie in diesem Fall bereits bekannt war, konnte die Tauglichkeit der neuen Methode so getestet - und bestätigt - werden.

Der Wert der neuen Methode liegt insbesondere darin, dass nun das Verhalten von Elektronen in Grenzflächen zwischen organischen Halbleitern und Metallen relativ einfach und sehr genau gemessen werden kann. Damit leistet diese vom FWF im Rahmen des Nationalen Forschungsnetzwerkes (NFN) "Interface controlled and functionalised organic thin films" unterstütze Arbeit einen grundlegenden Beitrag für die zukünftige Nutzung organischer Halbleiter.

Originalpublikation: Reconstruction of Molecular Orbital Densities from Photoemission Data, P. Puschnig, S. Berkebile, A. J. Fleming, G. Koller, K. Emtsev, T. Seyller, J. D. Riley, C. Ambrosch­Draxl, F. P. Netzer, M. G. Ramsey: Science 326, 702 (2009).

Wissenschaftlicher Kontakt:
DI Dr. Peter Puschnig
Montanuniversität Leoben
Lehrstuhl für Atomistic Modelling and Design of Materials T +43 / 3842 / 402 4403 E peter.puschnig@unileoben.ac.at
Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Redaktion & Aussendung:
PR&D - Public Relations für Forschung & Bildung Campus Vienna Biocenter 2 1030 Wien T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

Stefan Bernhardt | PR&D
Weitere Informationen:
http://www.fwf.ac.at
http://www.fwf.ac.at/de/public_relations/press/pv200911-de.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise