Molekulare Vermessungsarbeit

Diese jetzt in SCIENCE veröffentlichte Methode bietet eine wichtige Grundlage für die Entwicklung organischer Halbleiterelemente. Entscheidend für den Erfolg des vom Wissenschaftsfonds FWF unterstützten Projektes war die mathematische Transformation der Messdaten. Erst diese erlaubte die Interpretation der Elektronenverteilung und damit Rückschlüsse auf mögliche Eigenschaften organischer Halbleiterelemente.

Ultradünne Schichten aus organischen Molekülen bilden die Grundlage für zukünftige Halbleitertechnologien. Denn die hohe Flexibilität der organischen Moleküle erlaubt völlig neue Einsatzmöglichkeiten. Biegsame Bildschirme werden ebenso möglich wie kostengünstige Solarzellen. Doch vor dem alltagstauglichen Einsatz organischer Halbleiter gilt es die Wechselwirkungen zwischen organischem Material und anorganischen Trägersubstanzen besser zu verstehen. Einem Team der Universitäten Graz und Leoben gelang es nun, eine wichtige Methode für diesen Zweck zu entwickeln.

DICHT AN DICHT
„Die Eigenschaften eines organischen Moleküls werden ganz wesentlich von bestimmten Elektronenzuständen definiert“, erklärt DI Dr. Peter Puschnig vom Lehrstuhl für Atomistic Modelling and Design of Materials der Montanuniversität Leoben, der die Untersuchung leitete. „Können wir die Verteilung der Elektronen im Molekül akkurat bestimmen, dann verstehen wir auch die Funktionsweise von organischen Halbleiterbauelementen besser und können deren Effizienz steigern.“ Bisher fehlte es jedoch an leistungsstarken Methoden, um ebendiese Elektronenverteilung zu messen. Doch nun gelang dem Team um Dr. Puschnig ein wesentlicher Fortschritt.

Das Team nutzte dazu den sogenannten photoelektrischen Effekt. Dieser erlaubt es, einzelne Elektronen aus organischen Molekülen „herauszuschlagen“. Im konkreten Projekt wurde ein organisches Molekül mit ultraviolettem Licht bestrahlt, dessen Energie stark genug war, einzelne Elektronen aus den Molekülen herauszulösen. Die Richtung und Geschwindigkeit der so freigesetzten Elektronen wurde anschließend mit hochsensiblen Detektoren gemessen und lieferte die grundlegenden Daten zur Berechnung der Elektronenverteilung im Molekül. Dabei arbeitete das Team um Prof. Michael Ramsey von der Universität Graz an einer Schicht von Hexaphenyl, die in einer Dicke von nur einem Molekül auf eine Kupferoberfläche aufgebracht worden war. Die eigentlichen Messungen wurden vom Grazer Teil des Teams an der Berliner Synchrotronstrahlungsquelle BESSY (Berliner Elektronen-Speicherring Gesellschaft für Synchrotronstrahlung) durchgeführt.

DAMIT GERECHNET
Zu der Auswertung der so gewonnenen Daten meint Dr. Puschnig: „Es zeigte sich eine ganz charakteristische Verteilung der emittierten Elektronen. Die Interpretation dieser Verteilung gestaltete sich allerdings zunächst schwierig, und eine Verknüpfung der Messdaten mit der ursprünglichen Elektronenverteilung im Molekül schien unmöglich.“ Erst spezielle mathematische Transformationen (Fourier-Transformation) zeigten, dass die gemessene Elektronenverteilung jener entsprach, die im Molekül vorliegt. Da diese durch Berechnungen im Rahmen der Dichtefunktionaltheorie in diesem Fall bereits bekannt war, konnte die Tauglichkeit der neuen Methode so getestet – und bestätigt – werden.

Der Wert der neuen Methode liegt insbesondere darin, dass nun das Verhalten von Elektronen in Grenzflächen zwischen organischen Halbleitern und Metallen relativ einfach und sehr genau gemessen werden kann. Damit leistet diese vom FWF im Rahmen des Nationalen Forschungsnetzwerkes (NFN) „Interface controlled and functionalised organic thin films“ unterstütze Arbeit einen grundlegenden Beitrag für die zukünftige Nutzung organischer Halbleiter.

Originalpublikation: Reconstruction of Molecular Orbital Densities from Photoemission Data, P. Puschnig, S. Berkebile, A. J. Fleming, G. Koller, K. Emtsev, T. Seyller, J. D. Riley, C. Ambrosch­Draxl, F. P. Netzer, M. G. Ramsey: Science 326, 702 (2009).

Wissenschaftlicher Kontakt:
DI Dr. Peter Puschnig
Montanuniversität Leoben
Lehrstuhl für Atomistic Modelling and Design of Materials T +43 / 3842 / 402 4403 E peter.puschnig@unileoben.ac.at
Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 – 8111
E stefan.bernhardt@fwf.ac.at
Redaktion & Aussendung:
PR&D – Public Relations für Forschung & Bildung Campus Vienna Biocenter 2 1030 Wien T +43 / 1 / 505 70 44 E contact@prd.at W http://www.prd.at

Media Contact

Stefan Bernhardt PR&D

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Erstmals 6G-Mobilfunk in Alpen getestet

Forschende der Universität Stuttgart erzielen leistungsstärkste Verbindung. Notrufe selbst in entlegenen Gegenden absetzen und dabei hohe Datenmengen in Echtzeit übertragen? Das soll möglich werden mit der sechsten Mobilfunkgeneration – kurz…

Neues Sensornetzwerk registriert ungewöhnliches Schwarmbeben im Vogtland

Das soeben fertig installierte Überwachungsnetz aus seismischen Sensoren in Bohrlöchern zeichnete Tausende Erdbebensignale auf – ein einzigartiger Datensatz zur Erforschung der Ursache von Schwarmbeben. Seit dem 20. März registriert ein…

Bestandsmanagement optimieren

Crateflow ermöglicht präzise KI-basierte Nachfrageprognosen. Eine zentrale Herausforderung für Unternehmen liegt darin, Über- und Unterbestände zu kontrollieren und Lieferketten störungsresistent zu gestalten. Dabei helfen Nachfrage-Prognosen, die Faktoren wie Lagerbestände, Bestellmengen,…

Partner & Förderer