Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Molekül-Baukasten: Strukturen, die sich selbst zusammenbauen

29.10.2012
An der TU Wien werden Partikel untersucht, die sich automatisch zu kristallartigen Strukturen zusammenfügen – ein neues Hoffnungsgebiet für die Materialforschung.
Sie sind winzig, sie sind vielseitig, sie könnten in der Materialwissenschaft bald eine besonders wichtige Rolle spielen: „Patchy Colloids“ sind mikroskopisch kleine Partikel, die aneinander andocken und sich ganz von selbst zu komplizierten Strukturen formieren können. Nun zeichnet sich eine völlig neue Methode ab, solche Partikel herzustellen. Emanuela Bianchi wurde dafür heuer mit einem Elise Richter Stipendium ausgezeichnet.

Mikroskopisch kleine Partikel docken aneinander an

Welche faszinierenden Möglichkeiten die Patchy Colloids bieten könnten, wird schon seit Jahren theoretisch untersucht. „Man kann sich diese Partikel wie winzige Kügelchen vorstellen, die an ihrer Oberfläche eine bestimmte Anzahl klebriger Andockstellen haben“, erklärt Emanuela Bianchi. Je nach Art und der Anzahl der Andockstellen (den sogenannten„Patches“), durch die sich die Partikel miteinander verbinden können und abhängig von äußeren Bedingungen können sich die Teilchen zu einer geordneten Struktur zusammenfügen – ähnlich wie einzelne Atome, die gemeinsam einen Kristall bilden.
Besonders interessant sind solche Strukturen für die Optik: „Wenn es gelingt, aus Kolloiden diamantartige Strukturen zu erzeugen, dann könnte man sogenannte photonische Kristalle herstellen“, sagt Emanuela Bianchi. Mit solchen photonischen Kristallen könnte man Lichtwellen ganz gezielt manipulieren.

Das Problem der Herstellung

Die Synthese solcher Patchy Colloids ist allerdings schwierig. Das Ausgangsmaterial dafür sind normalerweise gewöhnliche Kolloide: Partikel (in der Größe von wenigen Nano- bis Mikrometern), die in einem mikroskopischen Trägermedium fein verteilt sind, etwa die winzigen Fetttröpfchen, die Milch undurchsichtig weiß erscheinen lassen, oder die Pigmentpartikel in farbiger Tinte. Um aus kleinen Partikeln Patchy Colloids zu machen, müssen sie an ihrer Oberfläche mit Andockstellen versehen werden. „Für diesen Prozess gibt es unterschiedliche Ideen, doch sie alle haben gemeinsam, dass sie sehr aufwändig sind und nur eine recht geringe Anzahl von Patchy Colloids hervorbringen“, sagt Emanuela Bianchi.

Sternförmige Moleküle
Doch wenn sich Kolloide durch Selbstorganisation zu großen kristallartigen Strukturen zusammenfügen können – warum sollte man dann das Prinzip der Selbstorganisation nicht auch benutzen können, um die winzigen Kolloide selbst zu erzeugen? Gemeinsam mit Barbara Capone von der Fakultät für Physik der Universität Wien forscht Bianchi nun an sogenannten Stern-Polymeren. Diese Strukturen bestehen aus vielen einzelnen Molekülketten, die sternförmig von der Mitte nach außen ragen. Wenn man Molekülketten mit passenden chemischen Eigenschaften wählt, dann fügen sie sich ganz von selbst zu Bündeln mit klebrigen Endpunkten zusammen. So werden sie zu Patchy Colloids, ohne dass man ihre Oberfläche von außen speziell manipulieren müsste. Wie sich diese Polymerketten aneinanderkleben und wie die sternförmigen Strukturen zu diesen speziellen Kolloidteilchen werden, wird nun in Computersimulationen untersucht.
Diese neue Klasse von Patchy Colloids weist zwei spezielle Charakteristika auf: Im Gegensatz zu traditionellen Patchy Colloids sind die Teilchen nunmehr weich - sie können also in einem erheblichen Ausmaß überlappen - und die Patches sind in ihren Positionen nicht mehr fixiert - sie können also aus ihrer Gleichgewichtslage ausgelenkt werden. “Die Konsequenzen dieser neuen Eigenschaften könnten bei der Bildung kristalliner Strukturen sehr wichtig sein“, sagt Emanuela Bianchi. Das Gesamtproblem muss also auf unterschiedlichen Längenskalen betrachtet werden – von der molekularen Ebene bis hin zu makroskopischen Abmessungen. Das ist zwar wissenschaftlich höchst kompliziert, doch die Aussicht auf eine ganze Klasse neuartiger Materialien lässt die große Mühe heute jedenfalls lohnenswert erscheinen.

Elise Richter Stipendium für Emanuela Bianchi

Emanuela Bianchi wird ihre Forschung in den nächsten Jahren, finanziert durch das Elise Richter Stipendium des österreichischen Wissenschaftsfonds FWF, in der Arbeitsgruppe „Soft Matter Theory“ des Instituts für Theoretische Physik der TU Wien fortsetzen. Mit diesem Stipendium möchte der FWF junge Wissenschaftlerinnen an eine internationale akademische Karriere heranführen.

Rückfragehinweis:
Dr. Emanuela Bianchi
Institut für Theoretische Physik
Technische Universität Wien
emanuela.bianchi@tuwien.ac.at
T: +43-1-58801-13631

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://www.tuwien.ac.at/aktuelles/news_detail/article/7657/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften