Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mögliche Datenspeicherung der Zukunft in Grenzflächen

14.01.2014
Wissenschaftler entdecken polare Wände in antiferroelektrischem Material

Immer mehr unterbringen bei immer geringerem Platzverbrauch – was unmöglich klingt, ist Alltag in der Informationstechnologie, wo es seit Jahrzehnten gelingt, immer mehr Daten in Medien mit immer höherer Dichte zu speichern.


Atomar aufgelöste elektronenmikroskopische Abbildung. Grenzfläche blaugrün hervorgehoben. Kreise markieren Blei (gelb), Zirkonium (grün) und Sauerstoff (rot). Weißer Balken = ein Nanometer.

Forschungszentrum Jülich


Elektronenmikroskopische Abbildung eines antiferroelektrischen Kristalls mit den dunkel hervortretenden, diagonal verlaufenden Grenzfläche. Der Balken links unten enstspricht 200 Nanometern.

Forschungszentrum Jülich

Ein internationales Team um Jülicher Forscher hat nun ein physikalisches Phänomen entdeckt, das sich für die weitere Datenverdichtung eignen könnte. Sie fanden, dass die Grenzflächen, die in bestimmten kristallinen Materialien Bereiche voneinander trennen, eine Polarisierung aufweisen, mit der sich Informationen möglicherweise auf engstem Raum und dabei energiesparend speichern lassen könnten. Die Ergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift Nature Communications nachzulesen (DOI: 10.1038/ncomms4031).

Die Wissenschaftler des Forschungszentrums Jülich, der Schweizer Forschungseinrichtung EPFL in Lausanne, der Schlesischen Universität im polnischen Kattowitz und der Jiaotong-Universität in Xi'an, China, haben so genannte antiferroelektrische Kristalle mit Hilfe modernster Elektronenmikroskope sowie Computersimulationen untersucht. Solche Materialien besitzen keine elektrische Polarisierung und schienen deshalb bisher für Anwendungen in dieser Hinsicht uninteressant zu sein. Die Forscher haben nun herausgefunden, dass bestimmte Bereiche solcher Materialien doch ferroelektrische, polare Eigenschaften besitzen können.

Ferroelektrizität tritt auf, wenn positive und negative Ionen gegeneinander verschoben sind und sich elektrische Dipole bilden. Die Stärke und die Orientierung der Dipole, oder Polarisierung, lässt sich mit einer äußeren Spannung ändern und bleibt ohne Zufuhr von Strom erhalten, bis man sie überschreibt. Ferroelektrische Materialien werden deshalb bereits zum Beispiel bei Bahntickets zur Speicherung von Daten eingesetzt.

Die ferroelektrischen Bereiche, die die Forscher nun gefunden haben, sind nur rund zwei Nanometer dick und könnten deshalb einmal Daten auf zehnmal weniger Raum speichern, als es mit magnetischen Materialien möglich ist. Dabei handelt es sich um die Grenzflächen, die Areale gleichförmiger Strukturierung in den ansonsten antiferroelektrischen Materialien voneinander trennen.

"Solche Materialien kann man sich vorstellen wie dreidimensionale Patchwork-Objekte aus regelmäßig angeordneten Bausteinen, den Domänen", erläutert Dr. Xiankui Wei, Gastwissenschaftler am Jülicher Peter Grünberg Institut und Postdoktorand am EPFL. Innerhalb jedes einzelnen Bausteins tritt keine Polarisierung auf, da die elektrischen Dipole darin stets entgegengesetzt ausgerichtet sind und sich aufheben. Die Grenzflächen oder "Wände" zwischen den Domänen sind jedoch polar.

Atomar auflösende elektronenmikroskopische Untersuchungen mit Hilfe einer am Forschungszentrum Jülich entwickelten Technik zeigten, dass jede Wand einheitlich polarisiert ist. Um die Polarisierung zu ändern und Daten einzuschreiben, ist nur ein elektrisches Feld nötig, dann bleibt die Polarisierung bis zum Überschreiben gespeichert. Weil kein Strom fließen muss, ist der Energiebedarf geringer als bei der magnetischen Datenspeicherung.

"Besonders spannend für Anwendungen ist die spezielle Anordnung der Wände", berichtet Prof. Nava Setter vom EPFL: Unter dem Mikroskop sieht man schon bei relativ geringer Vergrößerung, dass die Domänen durch lange, parallel verlaufende Wände voneinander getrennt sind. Die Position der verformungsfreien Wände ist veränderlich – je nach Temperatur oder angelegter elektrischer Spannung rücken sie näher aneinander oder die Abstände vergrößern sich. Diese Phänomene wollen die Forscher genauer untersuchen, denn die Mobilität und die Dichte der Wände kontrollieren zu können, ist eine Voraussetzung für die technische Nutzung.

Originalveröffentlichung:
Ferroelectric translational antiphase boundaries in nonpolar materials;
Xian-Kui Wei, Alexander K. Tagantsev, Alexander Kvasov, Krystian Roleder,
Chun-Lin Jia, Nava Setter;
Nature Communications 5 (2014), Article number: 3031, published online: 8 January 2014; DOI: 10.1038/ncomms4031
Ansprechpartner:
Dr. Xiankui Wei, Peter Grünberg Institut - Mikrostrukturforschung (PGI-5)
Forschungszentrum Jülich
Tel. 02461 61-9338, E-Mail: x.wei@fz-juelich.de oder xiankui.wei@epfl.ch
Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de
Weitere Informationen:
Zur Pressemitteilung
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2014/14-01-14afe-boundaries.html;jsessionid=18627CF5A11F872F7BAFA69EF9168C50
Peter Grünberg Institut – Mikrostrukturforschung (PGI-5)
http://www.fz-juelich.de/pgi/pgi-5/DE/
École polytechnique fédérale de Lausanne EPFL – Ceramics Laboratory
http://lc.epfl.ch

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscherin entwickelt elektronische Textilstruktur für Medizinprodukte
17.02.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Untergrund beeinflusst Halbleiter-Monolagen
16.02.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Im Focus: Weltweit genaueste und stabilste transportable optische Uhr

Optische Strontiumuhr der PTB in einem PKW-Anhänger – für geodätische Untersuchungen, weltweite Uhrenvergleiche und schließlich auch eine neue SI-Sekunde

Optische Uhren sind noch genauer als die Cäsium-Atomuhren, die gegenwärtig die Zeit „machen“. Außerdem benötigen sie nur ein Hundertstel der Messdauer, um eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

Ökologischer Landbau: Experten diskutieren Beitrag zum Grundwasserschutz

17.02.2017 | Veranstaltungen

Von DigiCash bis Bitcoin

16.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017 | Biowissenschaften Chemie

LODENFREY setzt auf das Workforce Mangement von GFOS

17.02.2017 | Unternehmensmeldung

50 Jahre JULABO : Erfahrung – Können & Weiterentwicklung!

17.02.2017 | Unternehmensmeldung