Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mögliche Datenspeicherung der Zukunft in Grenzflächen

14.01.2014
Wissenschaftler entdecken polare Wände in antiferroelektrischem Material

Immer mehr unterbringen bei immer geringerem Platzverbrauch – was unmöglich klingt, ist Alltag in der Informationstechnologie, wo es seit Jahrzehnten gelingt, immer mehr Daten in Medien mit immer höherer Dichte zu speichern.


Atomar aufgelöste elektronenmikroskopische Abbildung. Grenzfläche blaugrün hervorgehoben. Kreise markieren Blei (gelb), Zirkonium (grün) und Sauerstoff (rot). Weißer Balken = ein Nanometer.

Forschungszentrum Jülich


Elektronenmikroskopische Abbildung eines antiferroelektrischen Kristalls mit den dunkel hervortretenden, diagonal verlaufenden Grenzfläche. Der Balken links unten enstspricht 200 Nanometern.

Forschungszentrum Jülich

Ein internationales Team um Jülicher Forscher hat nun ein physikalisches Phänomen entdeckt, das sich für die weitere Datenverdichtung eignen könnte. Sie fanden, dass die Grenzflächen, die in bestimmten kristallinen Materialien Bereiche voneinander trennen, eine Polarisierung aufweisen, mit der sich Informationen möglicherweise auf engstem Raum und dabei energiesparend speichern lassen könnten. Die Ergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift Nature Communications nachzulesen (DOI: 10.1038/ncomms4031).

Die Wissenschaftler des Forschungszentrums Jülich, der Schweizer Forschungseinrichtung EPFL in Lausanne, der Schlesischen Universität im polnischen Kattowitz und der Jiaotong-Universität in Xi'an, China, haben so genannte antiferroelektrische Kristalle mit Hilfe modernster Elektronenmikroskope sowie Computersimulationen untersucht. Solche Materialien besitzen keine elektrische Polarisierung und schienen deshalb bisher für Anwendungen in dieser Hinsicht uninteressant zu sein. Die Forscher haben nun herausgefunden, dass bestimmte Bereiche solcher Materialien doch ferroelektrische, polare Eigenschaften besitzen können.

Ferroelektrizität tritt auf, wenn positive und negative Ionen gegeneinander verschoben sind und sich elektrische Dipole bilden. Die Stärke und die Orientierung der Dipole, oder Polarisierung, lässt sich mit einer äußeren Spannung ändern und bleibt ohne Zufuhr von Strom erhalten, bis man sie überschreibt. Ferroelektrische Materialien werden deshalb bereits zum Beispiel bei Bahntickets zur Speicherung von Daten eingesetzt.

Die ferroelektrischen Bereiche, die die Forscher nun gefunden haben, sind nur rund zwei Nanometer dick und könnten deshalb einmal Daten auf zehnmal weniger Raum speichern, als es mit magnetischen Materialien möglich ist. Dabei handelt es sich um die Grenzflächen, die Areale gleichförmiger Strukturierung in den ansonsten antiferroelektrischen Materialien voneinander trennen.

"Solche Materialien kann man sich vorstellen wie dreidimensionale Patchwork-Objekte aus regelmäßig angeordneten Bausteinen, den Domänen", erläutert Dr. Xiankui Wei, Gastwissenschaftler am Jülicher Peter Grünberg Institut und Postdoktorand am EPFL. Innerhalb jedes einzelnen Bausteins tritt keine Polarisierung auf, da die elektrischen Dipole darin stets entgegengesetzt ausgerichtet sind und sich aufheben. Die Grenzflächen oder "Wände" zwischen den Domänen sind jedoch polar.

Atomar auflösende elektronenmikroskopische Untersuchungen mit Hilfe einer am Forschungszentrum Jülich entwickelten Technik zeigten, dass jede Wand einheitlich polarisiert ist. Um die Polarisierung zu ändern und Daten einzuschreiben, ist nur ein elektrisches Feld nötig, dann bleibt die Polarisierung bis zum Überschreiben gespeichert. Weil kein Strom fließen muss, ist der Energiebedarf geringer als bei der magnetischen Datenspeicherung.

"Besonders spannend für Anwendungen ist die spezielle Anordnung der Wände", berichtet Prof. Nava Setter vom EPFL: Unter dem Mikroskop sieht man schon bei relativ geringer Vergrößerung, dass die Domänen durch lange, parallel verlaufende Wände voneinander getrennt sind. Die Position der verformungsfreien Wände ist veränderlich – je nach Temperatur oder angelegter elektrischer Spannung rücken sie näher aneinander oder die Abstände vergrößern sich. Diese Phänomene wollen die Forscher genauer untersuchen, denn die Mobilität und die Dichte der Wände kontrollieren zu können, ist eine Voraussetzung für die technische Nutzung.

Originalveröffentlichung:
Ferroelectric translational antiphase boundaries in nonpolar materials;
Xian-Kui Wei, Alexander K. Tagantsev, Alexander Kvasov, Krystian Roleder,
Chun-Lin Jia, Nava Setter;
Nature Communications 5 (2014), Article number: 3031, published online: 8 January 2014; DOI: 10.1038/ncomms4031
Ansprechpartner:
Dr. Xiankui Wei, Peter Grünberg Institut - Mikrostrukturforschung (PGI-5)
Forschungszentrum Jülich
Tel. 02461 61-9338, E-Mail: x.wei@fz-juelich.de oder xiankui.wei@epfl.ch
Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de
Weitere Informationen:
Zur Pressemitteilung
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2014/14-01-14afe-boundaries.html;jsessionid=18627CF5A11F872F7BAFA69EF9168C50
Peter Grünberg Institut – Mikrostrukturforschung (PGI-5)
http://www.fz-juelich.de/pgi/pgi-5/DE/
École polytechnique fédérale de Lausanne EPFL – Ceramics Laboratory
http://lc.epfl.ch

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics