Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit 300 Kilometern pro Sekunde zu neuer Elektronik

22.06.2015

Ein Material mit superschnellen Elektronen, das den Riesenmagneto-Widerstand zeigt, könnte sich für elektronische Bauteile eignen

Das Design elektronischer Bauteile könnte sich künftig wesentlich vereinfachen. Wissenschaftler des Max-Planck-Instituts für Chemische Physik fester Stoffe haben entdeckt, dass der elektrische Widerstand einer Verbindung aus Niob und Phosphor extrem steigt, wenn ein starkes Magnetfeld an dem Material anliegt.


Hoher Widerstand dank schneller Elektronen: Die Ladungsträger (blau: Elektronen, rot: Löcher) eines Halbleiters werden durch das Magnetfeld (schwarze Pfeile) von ihrer ursprünglichen Stromrichtung (grüner Pfeil) abgelenkt; je schneller sie sind, umso stärker ist die Ablenkung entgegen der ursprünglichen Stromrichtung und damit die Zunahme des Widerstandes. In Niophosphid ist der Effekt besonders groß, weil es besonders schnelle Elektronen besitzt.

© Yulin Chen

Dieser Riesenmagneto-Widerstand, dem modernen Festplatten ihre hohe Speicherkapazität verdanken, ist bisher vor allem von komplex strukturierten Materialien bekannt. Niobphosphid oder ein Material mit ähnlichen Eigenschaften kommt da als Alternative in Frage, die sich leichter herstellen lässt.

Die neuen Erkenntnisse zu Niobphosphid haben die Max-Planck-Forscher gemeinsam mit Kollegen des Hochfeld-Magnetlabors am Helmholtz-Zentrum Dresden-Rossendorf und der Radboud University in den Niederlanden in der Fachzeitschrift Nature Physics veröffentlicht.

Elektronik soll immer mehr Daten, immer schneller und auf engerem Raum verarbeiten und speichern. Um entsprechende elektronische Bauteile zu entwickeln, helfen Ingenieuren zum Glück Effekte, die Physiker mit ziemlicher Regelmäßigkeit entdecken – zum Beispiel der Riesenmagneto-Widerstand. Moderne Festplatten nutzen dieses Phänomen, bei dem sich der Widerstand eines Materials stark ändert, wenn dieses einem Magnetfeld ausgesetzt wird. Bisher nutzt die Computer-Industrie verschiedene, filigran übereinander geschichtete Materialien, um den Effekt zu erzielen. Max-Planck-Wissenschaftlern in Dresden haben nun erstmals einen fast 10.000-fachen Anstieg des Widerstandes in einem einzigen Material, nämlich Niobphosphid beobachtet.

Der Widerstand von Niob-Phosphid ändert sich in einem Magnetfeld so drastisch, weil das Feld die Ladungsträger durch die sogenannte Lorentzkraft ablenkt. Diese Kraft führt dazu, dass bei steigendem Magnetfeld ein immer größerer Teil der Elektronen gewissermaßen in die falsche Richtung fließt. Dadurch wächst der elektrische Widerstand. Aus diesem Grund heißt diese Eigenschaft, die manche Materialien aufweisen, Magneto-Widerstand.

Superschnelle Elektronen bewirken einen Riesenmagneto-Widerstand

„Die Lorentzkraft und damit der Einfluss eines Magnetfeldes ist umso größer, je schneller sich die Elektronen im Material bewegen“, erläutert Binghai Yan, Forscher am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden. Er und seine Kollegen kamen deshalb auf die Idee, eine Verbindung aus dem Übergangsmetall Niob (Nb) und Phosphor (P) zu untersuchen. In diesem Material gibt es superschnelle Ladungsträger, sogenannte relativistische Elektronen. Diese bewegen sich mit etwa einem Tausendstel der Lichtgeschwindigkeit – das sind 300 Kilometer pro Sekunde.

Für ihre Untersuchungen nutzten die Wissenschaftler neben dem Hochfeld-Magnetlabor Dresden auch das High Field Magnet Laboratory an der Radboud University in Nijmegen und die Diamond Light Source in Oxfordshire, England. Die Wissenschaftler fanden dabei auch heraus, weshalb die Elektronen so extrem schnell und beweglich sind. Für die exotischen Eigenschaften sind nämlich spezielle elektronische Zustände in Niobphosphid verantwortlich: Einige Elektronen in diesem sogenannten Weyl-Metall verhalten sich, als seien sie masselos. Sie können sich daher besonders schnell bewegen. Binhai Yan ist überzeugt: „Der Effekt, den wir in Niobphosphid entdeckt haben, kann durch geschicktes Materialdesign sicher noch verbessert werden. Diese Materialklasse hat daher enormes Potential für künftige Anwendungen in der Informationstechnologie.”


Ansprechpartner

Prof. Dr. Claudia Felser
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Telefon: +49 351 4646-3001

Fax: +49 351 4646-3002

E-Mail: Claudia.Felser@cpfs.mpg.de

 
Dr. Binghai Yan
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Telefon: +49 351 4646-2237

E-Mail: yan@cpfs.mpg.de


Originalpublikation
Dr Binghai Yan, et al.

Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP

Nature Physics (2015), DOI:10.1038/nphys3372

Prof. Dr. Claudia Felser | Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Weitere Informationen:
http://www.mpg.de/9283155/riesenmagneto-widerstand-elektronik

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie