Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit 300 Kilometern pro Sekunde zu neuer Elektronik

22.06.2015

Ein Material mit superschnellen Elektronen, das den Riesenmagneto-Widerstand zeigt, könnte sich für elektronische Bauteile eignen

Das Design elektronischer Bauteile könnte sich künftig wesentlich vereinfachen. Wissenschaftler des Max-Planck-Instituts für Chemische Physik fester Stoffe haben entdeckt, dass der elektrische Widerstand einer Verbindung aus Niob und Phosphor extrem steigt, wenn ein starkes Magnetfeld an dem Material anliegt.


Hoher Widerstand dank schneller Elektronen: Die Ladungsträger (blau: Elektronen, rot: Löcher) eines Halbleiters werden durch das Magnetfeld (schwarze Pfeile) von ihrer ursprünglichen Stromrichtung (grüner Pfeil) abgelenkt; je schneller sie sind, umso stärker ist die Ablenkung entgegen der ursprünglichen Stromrichtung und damit die Zunahme des Widerstandes. In Niophosphid ist der Effekt besonders groß, weil es besonders schnelle Elektronen besitzt.

© Yulin Chen

Dieser Riesenmagneto-Widerstand, dem modernen Festplatten ihre hohe Speicherkapazität verdanken, ist bisher vor allem von komplex strukturierten Materialien bekannt. Niobphosphid oder ein Material mit ähnlichen Eigenschaften kommt da als Alternative in Frage, die sich leichter herstellen lässt.

Die neuen Erkenntnisse zu Niobphosphid haben die Max-Planck-Forscher gemeinsam mit Kollegen des Hochfeld-Magnetlabors am Helmholtz-Zentrum Dresden-Rossendorf und der Radboud University in den Niederlanden in der Fachzeitschrift Nature Physics veröffentlicht.

Elektronik soll immer mehr Daten, immer schneller und auf engerem Raum verarbeiten und speichern. Um entsprechende elektronische Bauteile zu entwickeln, helfen Ingenieuren zum Glück Effekte, die Physiker mit ziemlicher Regelmäßigkeit entdecken – zum Beispiel der Riesenmagneto-Widerstand. Moderne Festplatten nutzen dieses Phänomen, bei dem sich der Widerstand eines Materials stark ändert, wenn dieses einem Magnetfeld ausgesetzt wird. Bisher nutzt die Computer-Industrie verschiedene, filigran übereinander geschichtete Materialien, um den Effekt zu erzielen. Max-Planck-Wissenschaftlern in Dresden haben nun erstmals einen fast 10.000-fachen Anstieg des Widerstandes in einem einzigen Material, nämlich Niobphosphid beobachtet.

Der Widerstand von Niob-Phosphid ändert sich in einem Magnetfeld so drastisch, weil das Feld die Ladungsträger durch die sogenannte Lorentzkraft ablenkt. Diese Kraft führt dazu, dass bei steigendem Magnetfeld ein immer größerer Teil der Elektronen gewissermaßen in die falsche Richtung fließt. Dadurch wächst der elektrische Widerstand. Aus diesem Grund heißt diese Eigenschaft, die manche Materialien aufweisen, Magneto-Widerstand.

Superschnelle Elektronen bewirken einen Riesenmagneto-Widerstand

„Die Lorentzkraft und damit der Einfluss eines Magnetfeldes ist umso größer, je schneller sich die Elektronen im Material bewegen“, erläutert Binghai Yan, Forscher am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden. Er und seine Kollegen kamen deshalb auf die Idee, eine Verbindung aus dem Übergangsmetall Niob (Nb) und Phosphor (P) zu untersuchen. In diesem Material gibt es superschnelle Ladungsträger, sogenannte relativistische Elektronen. Diese bewegen sich mit etwa einem Tausendstel der Lichtgeschwindigkeit – das sind 300 Kilometer pro Sekunde.

Für ihre Untersuchungen nutzten die Wissenschaftler neben dem Hochfeld-Magnetlabor Dresden auch das High Field Magnet Laboratory an der Radboud University in Nijmegen und die Diamond Light Source in Oxfordshire, England. Die Wissenschaftler fanden dabei auch heraus, weshalb die Elektronen so extrem schnell und beweglich sind. Für die exotischen Eigenschaften sind nämlich spezielle elektronische Zustände in Niobphosphid verantwortlich: Einige Elektronen in diesem sogenannten Weyl-Metall verhalten sich, als seien sie masselos. Sie können sich daher besonders schnell bewegen. Binhai Yan ist überzeugt: „Der Effekt, den wir in Niobphosphid entdeckt haben, kann durch geschicktes Materialdesign sicher noch verbessert werden. Diese Materialklasse hat daher enormes Potential für künftige Anwendungen in der Informationstechnologie.”


Ansprechpartner

Prof. Dr. Claudia Felser
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Telefon: +49 351 4646-3001

Fax: +49 351 4646-3002

E-Mail: Claudia.Felser@cpfs.mpg.de

 
Dr. Binghai Yan
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Telefon: +49 351 4646-2237

E-Mail: yan@cpfs.mpg.de


Originalpublikation
Dr Binghai Yan, et al.

Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP

Nature Physics (2015), DOI:10.1038/nphys3372

Prof. Dr. Claudia Felser | Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Weitere Informationen:
http://www.mpg.de/9283155/riesenmagneto-widerstand-elektronik

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen
23.04.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics