Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroschwimmer lernt vom Wimperntierchen

24.02.2016

Ein aus Flüssigkristall-Elastomeren geformter Schwimmkörper wird durch eine lichtinduzierte peristaltische Bewegung angetrieben

Wimpertierchen leisten Erstaunliches: Weil die Mikroorganismen so winzig sind, erscheint ihnen das Wasser, in dem sie leben, so zäh wie Honig. Trotzdem schieben sie sich allein durch die synchronisierte Bewegung Tausender äußerst dünner Filamente an ihrer Außenhaut, den „Wimpern“, durch ein Gewässer. Forscher des Max-Planck-Instituts für Intelligente Systeme in Stuttgart bewegen nun mit bloßem Auge kaum sichtbare Roboter auf ähnliche Weise durch Flüssigkeiten.


Lichtgetriebener Mikroschwimmer: Das Material des knapp ein Millimeter langen Schwimmkörpers ist so gewählt, dass es sich im Licht ausdehnt. Daher laufen wellenförmige Auswölbungen über den Schwimmer und treiben ihn in entgegengesetzter Richtung an, wenn grüne Lichtstreifen über seine Oberfläche fahren.

© Alejandro Posada


Der weiche, lichtempfindliche Mikroroboter wird durch ein dynamisches, strukturiertes Lichtfeld bewegt. Der Schwimmkörper besteht aus einer Mischung von Flüssigkristall-Molekülen (LC) und Farbstoffmolekülen, die sich erwärmt wenn sie beleuchtet wird. Dabei verbiegen sich die Flüssigkristall-Moleküle, sodass sich das Material ausdehnt und an der Oberfläche im Licht auswölbt. In einem sich bewegenden Lichtfeld wandern die Auswölbungen in einer peristaltischen Bewegung über den Schwimmkörper und treiben ihn an.

© Stefano Palagi

Ihr Mikroschwimmer benötigt für diese Leistung weder eine komplexe Maschinerie von Antriebselementen noch wird er durch von außen wirkende Kräfte, etwa Magnetfelder, angetrieben. Die Wissenschaftler um Peer Fischer bauten ihr Modell des Wimperntierchens vielmehr aus einem Material, das die Eigenschaften von Flüssigkristallen und elastischen Kunststoffen in sich vereinigt und sich durch Bestrahlung mit grünem Licht peristaltisch fortbewegt.

Ein aus der Science-Fiction bekanntes Mini-U-Boot, das durch den menschlichen Körper schwimmt, Krankheiten aufspürt und kuriert, lässt sich mit diesem Prinzip zwar nicht verwirklichen. Doch in kleinen medizinischen Helfern vor einem Endoskop könnte eine weiterentwickelte Form des neuen Stuttgarter Antriebs durchaus einmal eingesetzt werden.

Ihre Kleinheit macht schwimmenden Mikroorganismen das Leben schwer. Da ihre Bewegung kaum Wucht besitzt, bremst sie die Reibung zwischen dem Wasser und ihrer Außenhaut sehr stark ab. Sie müssen sich fühlen wie ein Schwimmer in zähem Honig. Die Zähigkeit des Mediums verhindert zudem die Bildung von Turbulenzen, die Kraft auf das Wasser übertragen und den Schwimmer somit antreiben könnten. Daher vollführen die Wimpern durch eine kollektive und abgestimmte Bewegung eine Wellenbewegung, die am Körper des Einzellers entlanglaufen, ähnlich einer Laola-Welle im Fußballstadium oder den Beinchen eines Tausendfüßlers. Diese Wellen schieben die Flüssigkeit mit sich, sodass sich das Tierchen, das mit etwa 100 Mikrometer, also einem Zehntel Millimeter etwa so groß ist wie ein menschliches Haar dick, in die entgegengesetzte Richtung bewegt.

„Unser Ziel war, diese Art der Bewegung mit einem Mikroroboter nachzuempfinden“, sagt Stefano Palagi Erstautor der Studie vom Max-Planck-Institut für Intelligente Systeme in Stuttgart, an der außerdem Wissenschaftler der Universitäten Cambridge, Stuttgart und Florenz mitwirkten. Es sei aber fast unmöglich, die Fortbewegungsart der Wimpertierchen in Form einer winzigen Maschine nachzustellen, sagt Peer Fischer, der auch Professor für Physikalische Chemie an der Universität Stuttgart ist. Denn diese müsste Hunderte einzelne Aktuatoren, sowie deren Kontrolle und Energieversorgung besitzen.

Flüssigkristall-Elastomere verhalten sich wie Mikadostäbchen

Forscher behelfen sich daher normalerweise mit Kräften, die sie von außen an einen Mikroschwimmer angelegen: etwa einem Magnetfeld, das zum Beispiel eine winzige magnetische Schraube dreht. „Doch so ergibt sich nur eine eingeschränkte Bewegungsfreiheit“, sagt Fischer. Die Stuttgarter wollten aber eine Art universellen Schwimmer bauen, der sich selbständig ohne Kraftübertragung von außen und ohne vordefinierte Gangarten frei in einer Flüssigkeit bewegen kann.

Dies ist ihnen mit erstaunlich einfachen Mitteln gelungen. Als Schwimmkörper verwendeten sie so genannte Flüssigkristall-Elastomere. Diese dehnen sich aus, wenn sie Licht oder Wärme ausgesetzt werden. Sie bestehen wie ein Flüssigkristall aus stäbchenförmigen Molekülen, die zuerst parallel ausgerichtet werden wie ein Bündel Mikadostäbchen, bevor der Spieler sie wirft. Die Moleküle sind untereinander vernetzt, was dem Flüssigkristall eine gewisse Festigkeit wie einem Kunststoff gibt. Bei Erwärmung verlieren die Stäbchen ihre Ausrichtung. Dadurch dehnt sich das Material aus, ähnlich wie die Mikadostäbchen nach dem Wurf mehr Platz auf der Unterlage beanspruchen.

Die Wärme erzeugten die Stuttgarter Forscher in ihren Experimenten, indem sie grünes Licht auf das Material strahlten. Das Licht bewirkt zudem, dass sich die Form der Moleküle selbst ändert. Diese besitzen eine chemische Bindung, die wie ein Gelenk wirkt. Durch die Bestrahlung biegt sich das stäbchenförmige Molekül an dem Gelenk zu einem U. Damit steigt die molekulare Unordnung noch mehr und das Material dehnt sich weiter aus. Das Material reagiert sehr schnell auf das Ein- und auch das Ausschalten des Lichtes. So nimmt es sofort nach dem Ausschalten wieder die ursprüngliche Form an.

Mit dem Licht wandern Auswölbungen über den Schwimmkörper

Die Forscher haben zwei Arten von Mikroschwimmern hergestellt, die einen als langgestreckte Zylinder, etwa einen Millimeter lang und gut zweihundert Mikrometer dick, die anderen als winzige Scheibchen von 50 Mikrometer Dicke und mit Durchmessern von zweihundert oder vierhundert Mikrometern.

In einem ersten Experiment projizierte Fischers Team mithilfe eines Mikroskops ein Streifenmuster aus Licht auf ein Stäbchen. An den beleuchteten Stellen beobachteten sie Auswölbungen. Das Lichtmuster ließen sie sodann entlang der Längsrichtung des Stäbchens wandern. So verschoben sich auch die Auswölbungen wie Wellen entlang des Körpers. „Die Bewegung erzeugt der Roboter von Innen heraus“, betont Peer Fischer. Das Licht übertrage lediglich Energie auf den Schwimmer, übe aber keine Kraft aus. Auf ähnliche Weise bewegt sich ein Wurm fort: Er erzeugt Wellen in seinem Körper, indem er ringförmige Auswölbungen und dazwischen liegende längs gerichtete Streckungen von einem Ende seines Körpers zum anderen laufen lässt. Das Fachwort dafür lautet Peristaltik.

Die durch das Lichtmuster hervorgerufene Peristaltik transportiert Flüssigkeit am Körper des Mikroschwimmers entlang, sodass er sich in entgegengesetzter Richtung bewegt. So erreichte das Vehikel etwa ein Tempo von etwa 2,1 Mikrometern pro Sekunde und legte 110 Mikrometer zurück.

Eine für Mikroschwimmer unbekannte Bandbreite an Bewegungen

Peer Fischer und seine Kollegen demonstrierten auch, dass sie die Roboter sehr flexibel steuern konnten. Denn im Prinzip lassen sich beliebige Lichtmuster auf die Schwimmer projizieren. Die Forscher erzeugen die Muster mit einem Mikrospiegelaktor, einem Mosaik aus knapp 800000 winzigen Spiegelchen, die sich einzeln bewegen lassen. So projizierten sie etwa wandernde Streifenmuster auf die kreisförmige Oberseite eines Scheibchen-Roboters und variierten dessen Richtung so, dass der Mikroschwimmer eine viereckige Bahn beschrieb.

Anschließend brachten sie Scheibchen zum Rotieren, indem sie ein Ventilator-ähnliches Lichtmuster auf deren Oberfläche projizierten. Sie konnten sogar zwei Scheibchen unabhängig voneinander steuern: Das eine ließen sie im Uhrzeigersinn, das andere dagegen rotieren. „Es ist somit eine Bandbreite von Bewegungen möglich, wie sie bislang bei Mikroschwimmern nicht bekannt war“, betont Stefano Palagi.

„Eine wichtige Fragestellung war auch, ob sich unsere Schwimmer weiter verkleinern lassen“, fügt der Forscher hinzu. Eine theoretische Berechnung zeigte, dass dies möglich sein sollte: Auch kleinere Mikroschwimmer könnten sich durch wellenförmige Bewegungsmuster antreiben. Das motiviert die Stuttgarter Forscher: „Am Ende zielen wir darauf ab, noch näher an die Leistungen der Natur heranzureichen“, sagt Peer Fischer.


Ansprechpartner

Stefano Palagi, PhD
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-3516

E-Mail: palagi@is.mpg.de


Prof. Peer Fischer, Ph.D.
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-3560

E-Mail: OfficeFischer@is.mpg.de


Originalpublikation
Stefano Palagi, Andrew G. Mark, Shang Yik Reigh, Kai Melde, Tian Qiu, Hao Zeng, Camilla Parmeggiani, Daniele Martella, Alberto Sanchez-Castillo, Nadia Kapernaum, Frank Giesselmann, Diederik S. Wiersma, Eric Lauga und Peer Fischer

Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots

Nature Materials, 15. Februar 2016; doi:10.1038/nmat4569

Stefano Palagi, PhD | Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Weitere Informationen:
https://www.mpg.de/10310333/mikroschwimmer-peristaltisch-bewegung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hologramm für Moleküle

26.09.2017 | Biowissenschaften Chemie

Das Motorprotein tanzt in unseren Zellen

26.09.2017 | Biowissenschaften Chemie

Tauben beim Multitasking besser als Menschen

26.09.2017 | Biowissenschaften Chemie