Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikropumpen fürs Westentaschenlabor

07.11.2012
Flüssigkristalline Elastomere bilden winzige Hohlkugel, die bei einer
Temperaturerhöhung Flüssigkeit aus dem Innern nach außen pumpt

Wissenschaftler an der Johannes Gutenberg-Universität Mainz (JGU) haben winzige Mikropumpen aus elastischem Material entwickelt, die als Bauteile für Chiplabore Verwendung finden könnten. Die Mikropumpen haben einen Durchmesser von etwa einem halben Millimeter und sind damit nicht größer als Grieß.


Entstehung der Kern-Schale-Partikel im mikrofluidischen Reaktor

Foto: Institut für Organische Chemie, JGU

Sie sind als Kern-Schale-Teilchen aufgebaut mit einer äußeren Hülle aus flüssigkristallinen Elastomeren. Diese Materialien sind in der Lage, auf externe Reize zu reagieren. So verformen sich die runden Kern-Schale-Tropfen bei einer Temperaturerhöhung zu Stäbchen. Durch die Verformung der elastischen Außenhülle wird der innere, flüssige Kern durch ein Ventil nach außen gepumpt. Der Prozess ist reversibel, sodass die Flüssigkeit auch wieder in das Innere der Hohlkugel zurückströmt.

Die Wissenschaftler um Univ.-Prof. Dr. Rudolf Zentel vom Institut für Organische Chemie haben bei ihrer Entwicklung mit einer besonderen Materialklasse gearbeitet: Flüssigkristalline Elastomere (liquid crystalline elastomers, LCE) bestehen aus vernetzten Polymerketten, an die flüssigkristalline Moleküle angebunden sind. LCEs kombinieren dadurch das gummi-elastische Verhalten von Polymernetzwerken mit den selbstorganisierenden Eigenschaften der Flüssigkristalle, wie sie auch aus Flüssigkristalldisplays bekannt sind. Aufgrund der mechanischen Eigenschaften werden diese Werkstoffe häufig als „künstliche Muskeln“ bezeichnet, der Formgedächtniseffekt erlaubt ihre Verwendung als Aktoren und Sensoren.

Eva-Kristina Fleischmann und Hsin-Ling Liang ist es gelungen, eine mikrofluidische Apparatur zu entwickeln, mit deren Hilfe in einem kontinuierlichen Prozess Mikroaktoren aus LCEs hergestellt werden können. Das Besondere an der Methode ist, dass auch Partikel mit einer Kern-Schale-Geometrie machbar sind, wobei ein flüssigkristallines Elastomer die Schale bildet und der Kern im Innern mit Glycerol gefüllt ist. In einer Veröffentlichung in Nature Communications beschreiben die Wissenschaftler weiter, wie sich die runden Kern-Schale-Partikel bei einer Temperaturerhöhung zu Stäbchen verformen.

Wird nun in der Elastomerschale ein Ventil angebracht, führt die Deformation des äußeren Elastomers dazu, dass der innere, flüssige Kern durch das Ventil nach außen gepumpt wird. Da dieser Prozess vollständig reversibel ist, eignen sich die Partikel als Mikropumpen. Damit ist eine neue Anwendung von LCEs als Mikropumpen in mikroelektromechanischen Systemen und Lab-on-chip-Systemen, auch als Chiplabore oder Westentaschenlabore bezeichnet, möglich.

Das Projekt ist eine Kooperation im Rahmen der International Research Training Group 1404, einem internationalen Graduiertenkolleg zwischen der Universität Mainz und der Seoul National University, Korea. Ebenfalls daran beteiligt waren Wissenschaftler vom Institut für physikalische Chemie der Universität Stuttgart.

Fotos:
http://www.uni-mainz.de/bilder_presse/09_org_mikropumpen_kern-schale-partikel01.jpg
Entstehung der Kern-Schale-Partikel im mikrofluidischen Reaktor
Foto: Institut für Organische Chemie, JGU

http://www.uni-mainz.de/bilder_presse/09_org_mikropumpen_kern-schale-partikel02.jpg
Kern-Schale-Partikel, der den inneren, flüssigen Kern in eine dünne Glaskapillare pumpt
Foto: Institut für Organische Chemie, JGU

Veröffentlichung:
Eva-Kristina Fleischmann, Hsin-Ling Liang, Nadia Kapernaum, Frank Giesselmann, Jan Lagerwall, Rudolf Zentel
One-piece micropumps from liquid crystalline core-shell particles
Nature Communications, 6. November 2012
DOI: 10.1038/ncomms2193

Weitere Informationen:
Univ.-Prof. Dr. Rudolf Zentel
Institut für Organische Chemie
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-20361
Fax +49 6131 39-24778
E-Mail: zentel@uni-mainz.de
http://www.ak-zentel.chemie.uni-mainz.de/

Eva Fleischmann, Hsin-Ling Liang
Institut für Organische Chemie
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-25468
E-Mail: eva.fleischmann@uni-mainz.de, hliang@students.uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.optoelectronics.chemie.uni-mainz.de/
http://www.nature.com/ncomms/journal/v3/n10/full/ncomms2193.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen
23.04.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics