Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikropumpen fürs Westentaschenlabor

07.11.2012
Flüssigkristalline Elastomere bilden winzige Hohlkugel, die bei einer
Temperaturerhöhung Flüssigkeit aus dem Innern nach außen pumpt

Wissenschaftler an der Johannes Gutenberg-Universität Mainz (JGU) haben winzige Mikropumpen aus elastischem Material entwickelt, die als Bauteile für Chiplabore Verwendung finden könnten. Die Mikropumpen haben einen Durchmesser von etwa einem halben Millimeter und sind damit nicht größer als Grieß.


Entstehung der Kern-Schale-Partikel im mikrofluidischen Reaktor

Foto: Institut für Organische Chemie, JGU

Sie sind als Kern-Schale-Teilchen aufgebaut mit einer äußeren Hülle aus flüssigkristallinen Elastomeren. Diese Materialien sind in der Lage, auf externe Reize zu reagieren. So verformen sich die runden Kern-Schale-Tropfen bei einer Temperaturerhöhung zu Stäbchen. Durch die Verformung der elastischen Außenhülle wird der innere, flüssige Kern durch ein Ventil nach außen gepumpt. Der Prozess ist reversibel, sodass die Flüssigkeit auch wieder in das Innere der Hohlkugel zurückströmt.

Die Wissenschaftler um Univ.-Prof. Dr. Rudolf Zentel vom Institut für Organische Chemie haben bei ihrer Entwicklung mit einer besonderen Materialklasse gearbeitet: Flüssigkristalline Elastomere (liquid crystalline elastomers, LCE) bestehen aus vernetzten Polymerketten, an die flüssigkristalline Moleküle angebunden sind. LCEs kombinieren dadurch das gummi-elastische Verhalten von Polymernetzwerken mit den selbstorganisierenden Eigenschaften der Flüssigkristalle, wie sie auch aus Flüssigkristalldisplays bekannt sind. Aufgrund der mechanischen Eigenschaften werden diese Werkstoffe häufig als „künstliche Muskeln“ bezeichnet, der Formgedächtniseffekt erlaubt ihre Verwendung als Aktoren und Sensoren.

Eva-Kristina Fleischmann und Hsin-Ling Liang ist es gelungen, eine mikrofluidische Apparatur zu entwickeln, mit deren Hilfe in einem kontinuierlichen Prozess Mikroaktoren aus LCEs hergestellt werden können. Das Besondere an der Methode ist, dass auch Partikel mit einer Kern-Schale-Geometrie machbar sind, wobei ein flüssigkristallines Elastomer die Schale bildet und der Kern im Innern mit Glycerol gefüllt ist. In einer Veröffentlichung in Nature Communications beschreiben die Wissenschaftler weiter, wie sich die runden Kern-Schale-Partikel bei einer Temperaturerhöhung zu Stäbchen verformen.

Wird nun in der Elastomerschale ein Ventil angebracht, führt die Deformation des äußeren Elastomers dazu, dass der innere, flüssige Kern durch das Ventil nach außen gepumpt wird. Da dieser Prozess vollständig reversibel ist, eignen sich die Partikel als Mikropumpen. Damit ist eine neue Anwendung von LCEs als Mikropumpen in mikroelektromechanischen Systemen und Lab-on-chip-Systemen, auch als Chiplabore oder Westentaschenlabore bezeichnet, möglich.

Das Projekt ist eine Kooperation im Rahmen der International Research Training Group 1404, einem internationalen Graduiertenkolleg zwischen der Universität Mainz und der Seoul National University, Korea. Ebenfalls daran beteiligt waren Wissenschaftler vom Institut für physikalische Chemie der Universität Stuttgart.

Fotos:
http://www.uni-mainz.de/bilder_presse/09_org_mikropumpen_kern-schale-partikel01.jpg
Entstehung der Kern-Schale-Partikel im mikrofluidischen Reaktor
Foto: Institut für Organische Chemie, JGU

http://www.uni-mainz.de/bilder_presse/09_org_mikropumpen_kern-schale-partikel02.jpg
Kern-Schale-Partikel, der den inneren, flüssigen Kern in eine dünne Glaskapillare pumpt
Foto: Institut für Organische Chemie, JGU

Veröffentlichung:
Eva-Kristina Fleischmann, Hsin-Ling Liang, Nadia Kapernaum, Frank Giesselmann, Jan Lagerwall, Rudolf Zentel
One-piece micropumps from liquid crystalline core-shell particles
Nature Communications, 6. November 2012
DOI: 10.1038/ncomms2193

Weitere Informationen:
Univ.-Prof. Dr. Rudolf Zentel
Institut für Organische Chemie
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-20361
Fax +49 6131 39-24778
E-Mail: zentel@uni-mainz.de
http://www.ak-zentel.chemie.uni-mainz.de/

Eva Fleischmann, Hsin-Ling Liang
Institut für Organische Chemie
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-25468
E-Mail: eva.fleischmann@uni-mainz.de, hliang@students.uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.optoelectronics.chemie.uni-mainz.de/
http://www.nature.com/ncomms/journal/v3/n10/full/ncomms2193.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Der gestapelte Farbsensor
17.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Gefragtes Werkstoff-Knowhow: Fraunhofer LBF baut Elastomer-Forschung aus
16.11.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte