Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrokapseln mit Memory Effekt - so wird jedes Produkt zum Chamäleon

31.03.2009
Ein lang gehegter Traum von Produktentwicklern und Marketingspezialisten könnte bald wahr werden: die Farbe von Produkten reversibel und gleichzeitig bistabil, d. h. ohne ständige Energiezufuhr, verändern zu können.

Eine gemeinsame technologische Entwicklung von vier Instituten der Fraunhofer-Gesellschaft und der University of California Riverside (UCR) verspricht ein auf sämtlichen Oberflächen universell einsetzbares Material, dessen Farbe mit Hilfe eines drucker- oder stiftähnlichen Geräts verändert werden kann.

Die Forscher setzen dabei nicht auf Farbpigmente, sondern auf sogenannte photonische Kristalle, die sich beispielsweise in Pfauenfedern, Schmetterlingsflügeln oder Opalen finden. Diese photonischen Kristalle reflektieren eine bestimmte Lichtwellenlänge, das Partikel erscheint dann beispielsweise blau. Während natürliche photonische Kristalle lediglich eine Lichtwellenlänge reflektieren können, gelang es Prof. Yin und seinen Mitarbeitern an der UCR, photonische Kristalle auf Basis nanoskaliger Eisenoxid-Partikel aufzubauen, deren reflektierte Lichtwellenlänge über das Anlegen eines Magnetfeldes gesteuert werden kann. So lässt sich durch die Intensität des angelegten Magnetfelds die Farbe über das gesamte sichtbare Lichtwellenspektrum verändern.

Bisher hatte diese Technologie allerdings noch mit einem wesentlichen Problem zu kämpfen: Bei Entfernung des Magnetfelds fiel das Kristallgitter zusammen und das eisenoxid-basierte Material zeigte sich wieder in seiner Eigenfarbe - Braun. Forscher der Fraunhofer-Gesellschaft entwickelten nun einen Ansatz, der es ermöglicht, die photonischen Kristalle der UCR auf Oberflächen zu applizieren und gleichzeitig die eingestellte Farbe zu fixieren. Dazu werden nanoskalige Eisenoxid-Partikel in einer Matrix dispergiert, deren Fließfähigkeit sich verändern lässt. Anschließend wird das Materialsystem in Mikrokapseln mit 20 -100 Mikrometer Durchmesser verkapselt. Auf diese Weise lassen sich nun die einzelnen Mikrokapseln über einen externen Manipulator, etwa mit einem Stift oder Drucker, in ihrer Farbe einstellen. Das Matrixmaterial bewahrt dabei die eingestellte Gitterstruktur und damit die gewünschte Farbe.

Die Mikrokapseln lassen sich mit bereits etablierten Applikationsverfahren auf sämtlichen denkbaren Oberflächen aufbringen - von Textilien, Papier und Kunststoffen bis hin zu Metallen. Diese Oberflächen werden damit in ihrer Farbe variierbar. Die angedachten Einsatzmöglichkeiten reichen von mehrfach-beschreibbaren Papieren und Folien, über individualisierbare Verpackungen, Skier, Teppiche, Wandfarben bis hin zu veränderbarem Interieur bei Automobilen und Flugzeugen.

Doch nicht nur die Technologie weist großes Innovationspotenzial auf. Auch bezüglich der Weiterentwicklung möchten die Forscher der UCR und der Fraunhofer-Gesellschaft neue Wege beschreiten: Sie stellen derzeit ein Innovationsnetzwerk aus Unternehmen zusammen, die ein späteres Anwendungs- oder Herstellungsinteresse an dieser Technologie haben. Gemeinsam mit diesen Unternehmen soll zielgerichtet der spätere Produkteinsatz vorangetrieben werden. Die Finanzierung der Forschungsarbeiten übernehmen hier die Industrieunternehmen im Netzwerk. Unter dem Motto "High Risk - High Return: Forschung im Verbund" teilen sie sich das Entwicklungsrisiko und den Entwicklungsaufwand, profitieren dabei jedoch von der exklusiven Anwendung auf ihrem Applikationsfeld. Neben dem Zugriff auf die Forschungsergebnisse erhalten die beteiligten Unternehmen auch die Möglichkeit, die patentierte Technologie exklusiv in ihrem Anwendungsgebiet einzusetzen.

Im Innovationsnetzwerk arbeiten im Auftrag der Industriepartner insgesamt fünf Forschungspartner zusammen, um diesen vielversprechenden Ansatz in knapp drei Jahren zur Einsatzreife zu treiben:

o Das Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO in Stuttgart ist für das Netzwerkmanagement sowie für das Innovations- und Technologiemanagement zur systematischen, marktorientierten Entwicklung der Technologie verantwortlich.

o Die University of California Riverside UCR übernimmt die Weiterentwicklung des Partikelsystems zum Aufbau der photonischen Kristalle.

o Das Fraunhofer-Institut für Silicatforschung ISC in Würzburg entwickelt die in ihrer Fließfähigkeit gezielt änderbare Matrix.

o Das Fraunhofer-Institut für Angewandte Polymerforschung IAP in Potsdam-Golm übernimmt die Entwicklung geeigneter Mikrokapselsysteme und -verfahren.

o Das Fraunhofer-Institut für Physikalische Messtechnik IPM entwickelt den Manipulator, mit dem das Materialsystem angesteuert und in seiner Farbe verändert werden kann.

Ihr Ansprechpartner für weitere Informationen
Florian Rothfuss
Nobelstraße 12, 70569 Stuttgart
Telefon +49 711 970-2091, Fax +49 711 970-2299
florian.rothfuss@iao.fraunhofer.de

Claudia Garád | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.iao.fraunhofer.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen

25.04.2017 | HANNOVER MESSE

RWI/ISL-Containerumschlag-Index: Kräftiger Anstieg setzt sich fort

25.04.2017 | Wirtschaft Finanzen

Pharmacoscopy: Mikroskopie der nächsten Generation

25.04.2017 | Medizintechnik