Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrokapseln mit Memory Effekt - so wird jedes Produkt zum Chamäleon

31.03.2009
Ein lang gehegter Traum von Produktentwicklern und Marketingspezialisten könnte bald wahr werden: die Farbe von Produkten reversibel und gleichzeitig bistabil, d. h. ohne ständige Energiezufuhr, verändern zu können.

Eine gemeinsame technologische Entwicklung von vier Instituten der Fraunhofer-Gesellschaft und der University of California Riverside (UCR) verspricht ein auf sämtlichen Oberflächen universell einsetzbares Material, dessen Farbe mit Hilfe eines drucker- oder stiftähnlichen Geräts verändert werden kann.

Die Forscher setzen dabei nicht auf Farbpigmente, sondern auf sogenannte photonische Kristalle, die sich beispielsweise in Pfauenfedern, Schmetterlingsflügeln oder Opalen finden. Diese photonischen Kristalle reflektieren eine bestimmte Lichtwellenlänge, das Partikel erscheint dann beispielsweise blau. Während natürliche photonische Kristalle lediglich eine Lichtwellenlänge reflektieren können, gelang es Prof. Yin und seinen Mitarbeitern an der UCR, photonische Kristalle auf Basis nanoskaliger Eisenoxid-Partikel aufzubauen, deren reflektierte Lichtwellenlänge über das Anlegen eines Magnetfeldes gesteuert werden kann. So lässt sich durch die Intensität des angelegten Magnetfelds die Farbe über das gesamte sichtbare Lichtwellenspektrum verändern.

Bisher hatte diese Technologie allerdings noch mit einem wesentlichen Problem zu kämpfen: Bei Entfernung des Magnetfelds fiel das Kristallgitter zusammen und das eisenoxid-basierte Material zeigte sich wieder in seiner Eigenfarbe - Braun. Forscher der Fraunhofer-Gesellschaft entwickelten nun einen Ansatz, der es ermöglicht, die photonischen Kristalle der UCR auf Oberflächen zu applizieren und gleichzeitig die eingestellte Farbe zu fixieren. Dazu werden nanoskalige Eisenoxid-Partikel in einer Matrix dispergiert, deren Fließfähigkeit sich verändern lässt. Anschließend wird das Materialsystem in Mikrokapseln mit 20 -100 Mikrometer Durchmesser verkapselt. Auf diese Weise lassen sich nun die einzelnen Mikrokapseln über einen externen Manipulator, etwa mit einem Stift oder Drucker, in ihrer Farbe einstellen. Das Matrixmaterial bewahrt dabei die eingestellte Gitterstruktur und damit die gewünschte Farbe.

Die Mikrokapseln lassen sich mit bereits etablierten Applikationsverfahren auf sämtlichen denkbaren Oberflächen aufbringen - von Textilien, Papier und Kunststoffen bis hin zu Metallen. Diese Oberflächen werden damit in ihrer Farbe variierbar. Die angedachten Einsatzmöglichkeiten reichen von mehrfach-beschreibbaren Papieren und Folien, über individualisierbare Verpackungen, Skier, Teppiche, Wandfarben bis hin zu veränderbarem Interieur bei Automobilen und Flugzeugen.

Doch nicht nur die Technologie weist großes Innovationspotenzial auf. Auch bezüglich der Weiterentwicklung möchten die Forscher der UCR und der Fraunhofer-Gesellschaft neue Wege beschreiten: Sie stellen derzeit ein Innovationsnetzwerk aus Unternehmen zusammen, die ein späteres Anwendungs- oder Herstellungsinteresse an dieser Technologie haben. Gemeinsam mit diesen Unternehmen soll zielgerichtet der spätere Produkteinsatz vorangetrieben werden. Die Finanzierung der Forschungsarbeiten übernehmen hier die Industrieunternehmen im Netzwerk. Unter dem Motto "High Risk - High Return: Forschung im Verbund" teilen sie sich das Entwicklungsrisiko und den Entwicklungsaufwand, profitieren dabei jedoch von der exklusiven Anwendung auf ihrem Applikationsfeld. Neben dem Zugriff auf die Forschungsergebnisse erhalten die beteiligten Unternehmen auch die Möglichkeit, die patentierte Technologie exklusiv in ihrem Anwendungsgebiet einzusetzen.

Im Innovationsnetzwerk arbeiten im Auftrag der Industriepartner insgesamt fünf Forschungspartner zusammen, um diesen vielversprechenden Ansatz in knapp drei Jahren zur Einsatzreife zu treiben:

o Das Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO in Stuttgart ist für das Netzwerkmanagement sowie für das Innovations- und Technologiemanagement zur systematischen, marktorientierten Entwicklung der Technologie verantwortlich.

o Die University of California Riverside UCR übernimmt die Weiterentwicklung des Partikelsystems zum Aufbau der photonischen Kristalle.

o Das Fraunhofer-Institut für Silicatforschung ISC in Würzburg entwickelt die in ihrer Fließfähigkeit gezielt änderbare Matrix.

o Das Fraunhofer-Institut für Angewandte Polymerforschung IAP in Potsdam-Golm übernimmt die Entwicklung geeigneter Mikrokapselsysteme und -verfahren.

o Das Fraunhofer-Institut für Physikalische Messtechnik IPM entwickelt den Manipulator, mit dem das Materialsystem angesteuert und in seiner Farbe verändert werden kann.

Ihr Ansprechpartner für weitere Informationen
Florian Rothfuss
Nobelstraße 12, 70569 Stuttgart
Telefon +49 711 970-2091, Fax +49 711 970-2299
florian.rothfuss@iao.fraunhofer.de

Claudia Garád | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.iao.fraunhofer.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie