Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Metallische Schmelzen erstarren zu massivem Glas – Forscher entdecken einheitliches Muster

29.11.2010
Bei der Herstellung von Glas wird flüssige Silikatschmelze verwendet. Wenn man diese abkühlt, wird sie immer dickflüssiger und „gefriert“ dann zu Glas. Schon seit langem ist bekannt, dass dies auch bei Metallen möglich ist.

Aber erst heute kann man massive metallische Gläser herstellen. Saarbrücker Forscher haben jetzt entdeckt, dass auch Metallkristalle beim Abkühlen einfrieren und sich dabei genauso verhalten wie Silikatschmelzen oder metallische Gläser.

Die Wissenschaftler sehen darin ein einheitliches Muster, wie sich Flüssigkeiten und Kristalle beim Abkühlen selbst ordnen und einfrieren. Die Forschungsergebnisse haben sie in der aktuellen Ausgabe von „Nature Physics“ veröffentlicht.

Wenn bei der Glasherstellung der Grundstoff, der Quarzkristall, geschmolzen wird, entstehen im Inneren ungeordnete Strukturen. Wird die Flüssigkeit dann abgekühlt, beginnen sich die Atome zu ordnen, jedoch nicht so weit, dass wieder regelmäßige Kristallstrukturen entstehen. „In diesem Zustand, den Materialforscher als unterkühlte Schmelze bezeichnen, ist das Material zähflüssig und kann zum Beispiel beim Glasblasen sehr gut geformt werden. Durch weiteres Abkühlen gefriert die unterkühlte Schmelze dann zu einem Quarzglas, das auch als Silikatglas bezeichnet wird. Man nennt dieses Einfrieren den Glasübergang“, erläutert Ralf Busch, Professor für metallische Werkstoffe der Universität des Saarlandes.

Glas herzustellen ist aber nicht nur mit Quarzkristall möglich. Das Verfahren ist auch von verschiedenen Kombinationen von Metallen, den Legierungen, bekannt, ist dort aber viel schwieriger umzusetzen. „Bereits vor 50 Jahren hat man entdeckt, wie man metallische Gläser erzeugen kann. Man brauchte jedoch extrem hohe Abkühlraten von bis zu einer Million Grad pro Sekunde und konnte deshalb nur dünne Folien herstellen“ sagt der Materialforscher. In den letzten 20 Jahren habe man aber gelernt, bis zu fünf verschiedene Metalle so zu mischen, dass man diese Legierungsschmelze nicht mehr schnell abkühlen muss, um metallisches Glas zu bilden. Diese neuen Legierungen lassen sich wie Silikate oder Kunststoffe als zähe Flüssigkeit leicht verarbeiten und sind als Glas fester als Stahl. Busch erklärt dieses Phänomen so: „Wir haben erkannt, dass Mischungen aus großen und kleinen Metallatomen zähflüssig sind und viel langsamer kristallisieren. Dadurch kann man heute bis zu mehrere Zentimeter dicke metallische Massivgläser herstellen, die sich als Konstruktionswerkstoff eignen.“

Eine Silikatschmelze ist bereits am Schmelzpunkt zähflüssig wie Honig. Das liegt daran, dass sich die Atome in ihr langsam bewegen, weshalb sie auch sehr langsam kristallisiert. Man nennt sie deshalb eine „starke“ Flüssigkeit. Viele Flüssigkeiten sind an ihrem Schmelzpunkt jedoch sehr dünnflüssig. Hierzu gehören Wasser und auch alle reinen Metalle. Die Atome bewegen sich in diesen Flüssigkeiten schnell, so dass bei wenigen Grad unter dem Schmelzpunkt Kristallisation einsetzt. Aufgrund ihrer geringen Tendenz zur Glasbildung nennt man sie „fragil“. „Wenn man jedoch Wasser auf eine ganz bestimmte Weise kühlt und verhindert, dass sich dabei Eiskristalle bilden, wird weit unter dem eigentlichen Gefrierpunkt aus dem dünnflüssigen, fragilen Wasser ein dickflüssiges, starkes Wasser, dass dann bei noch tieferen Temperaturen zu einem glasartigen Wasser einfriert“, erläutert Ralf Busch.

Die Materialforscher in Saarbrücken fanden heraus, dass auch die glasbildenden Metallschmelzen einen solchen Übergang von einem dünnflüssigen zu einem dickflüssigen Zustand aufweisen. Der Grund für den Übergang ist, dass sich die Atome in der Flüssigkeit ordnen, jedoch noch keine feste Kristallstruktur ausbilden. Die Wissenschaftler wollten nun wissen, ob dieser Übergang von der fragilen in eine starke Substanz ein generelles Phänomen ist, das in jeder Materie abläuft. Für die Publikation in „Nature Physics“ haben sie dafür eine Legierung aus Eisen und Kobalt unter die Lupe genommen. Diese hat zwar eine Kristallstruktur, aber auch hier organisieren sich die Atome von einem ungeordneten Mischkristall zu einem geordneten Kristall. Dieser Übergang ist theoretisch bereits gut verstanden.

„Japanische Forscher hatten bei diesem Werkstoff schon vor rund 70 Jahren Effekte beobachtet, die sie damals nicht erklären konnten. Sie ähneln dem Einfrieren, das wir bei Flüssigkeiten am Glasübergang beobachten“, sagt Professor Busch. Sein Team hat daher gemeinsam mit Austen Angell, Glasforscher an der Arizona State University (USA), mit dieser Legierung experimentiert. Es stellte sich heraus, dass das Einfrieren in der Eisen-Kobalt Legierung genauso abläuft wie in den Silikatgläsern und ähnlich wie in glasbildenden Metallschmelzen. Dies erhellt zum einen, warum es heute möglich ist, metallische Massivgläser herzustellen. Zum anderen hat es theoretischen Konsequenzen, die die Autoren ausführlich in ihrem Artikel in „Nature Physics“ diskutieren.

Diese grundlegende physikalische Arbeit ist vor dem Hintergrund zu sehen, dass mit den metallischen Massivgläsern („bulk metallic glasses“) ein neuer Konstruktionswerkstoff im Kommen ist. „Dieses Material ist fester als Stahl, aber so elastisch wie Kunststoff. Es ist also ein idealer Federwerkstoff. Metallisches Glas lässt sich dabei mit den gleichen Methoden wie Kunststoff verarbeiten, zum Beispiel durch Spritzguss oder durch Blasformen“, erläutert Professor Busch. Anwendungen sieht der Saarbrücker Wissenschaftler beispielsweise im Feinguss, bei mikromechanischen Bauteilen oder bei dünnen, hochfesten Gehäuseteilen für elektronische Geräte.

Fragen beantwortet:

Prof. Dr. Ralf Busch
Lehrstuhl für metallische Werkstoffe
Tel: 0681/302-3208
Email: r.busch@mx.uni-saarland.de
Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-ISDN-Codec. Interviewwünsche bitte an die Pressestelle (0681/302-3610) richten.

Friederike Meyer zu Tittingdorf | idw
Weitere Informationen:
http://www.uni-saarland.de/fak8/lmw/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie