Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Zuverlässigkeit in der Mikroelektronik durch maßgeschneiderte Mikrostrukturen

26.05.2010
Neue Erkenntnisse im Mikrobereich: Das Fraunhofer-Institut für Werkstoffmechanik IWM in Halle hat neue, einzigartige Methoden entwickelt, die den Zusammenhang zwischen dem mikrostrukturellen Aufbau von Bonddrähten in der Mikroelektronik und deren mechanischen Verhalten aufklären.

Damit ermöglicht das Fraunhofer IWM den Materiallieferanten, der Halbleiterindustrie und den Herstellern mikroelektronischer Bauelemente, die Verformung, Stabilität und Festigkeit der winzigkleinen Drahtkontaktierungen im Einsatz vorherzusagen. Für diese innovative Forschungsarbeit erhielt Dr. Christian Dresbach den Werkstoffmechanik-Preis 2010, gestiftet von der Plansee Group Reutte.

Zwei kombinierte Vorgehensweisen führten zu den wissenschaftlich wegweisenden Ergebnissen: Zum einen wurden Untersuchungen zum mechanischen und mikrostrukturellen Verhalten der Drahtmaterialien vorgenommen. »Hierbei habe ich mich an die klassischen Theorien der Werkstoffmechanik gehalten. Wir haben aber zusätzlich geprüft, in wie weit diese Theorien auch in so kleinen Dimensionen gültig sind«, erläutert Dresbach seinen Versuchsansatz.

In dieser Gründlichkeit sind die Zusammenhänge für Bonddrahtmaterialien erst jetzt untersucht worden. Dabei dürfe nicht vergessen werden, dass die technischen Möglichkeiten, solche Untersuchungen an Bonddrähten überhaupt durchzuführen, erst seit wenigen Jahren existieren, erklärt Dresbach das Vorgehen.

Zeitgleich beschäftigte sich der junge Wissenschaftler mit der Frage der Charakterisierung von lokalen mechanischen Eigenschaften - und dies an Proben, die circa ein Drittel eines Haardurchmessers ausmachen. Im Mittelpunkt stand die Ermittlung der beim Kontaktierprozess lokal veränderten Verformungseigenschaften der Drähte. »Um diese Untersuchungen durchführen zu können, mussten neue Prüfmethoden und Auswertemöglichkeiten entwickelt werden, die so bislang nicht existierten«, so Dresbach.

Das Fraunhofer IWM kann jetzt aufgrund des tieferen materialphysikalischen Verständnisses und der neu entwickelten Prüfmethoden neue Lösungswege für die Industrie anbieten. Die Ergebnisse sind dabei für Materialhersteller, die Chipindustrie wie auch die Endanwender von hoher wirtschaftlicher Bedeutung.

So können Drahteigenschaften bereits bei der Herstellung genauer an den Einsatzzweck angepasst, die Zuverlässigkeit der Verbindungen erhöht und besser abgesichert, sowie Halbleiterchips schädigungsfrei kontaktiert werden. Die Ergebnisse fließen bereits jetzt in unterschiedliche Kooperationen zwischen dem Fraunhofer-Institut IWM und der Industrie ein. Sie werden darüber hinaus auf unterschiedlichen internationalen Konferenzen vorgestellt.

Jasmine Ait-Djoudi | Fraunhofer-Institut
Weitere Informationen:
http://www.iwm.fraunhofer.de/presse-und-veranstaltungen

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie