Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanisch und optisch einwandfreie Nähte

10.10.2011
Neue Absorbersysteme zur Verbesserung der Nahtqualität beim Laserschweißen technischer Textilien

Im Rahmen des Forschungsprojektes (AiF-Nr. 17031 N) „Absorbersysteme zum Laserschweißen von Textilien“ arbeiten Wissenschaftler der Hohenstein Institute zusammen mit Kollegen des Deutschen Wollforschungsinstituts in Aachen momentan an der Entwicklung neuer Infrarot Absorbersysteme zur mechanischen und optischen Verbesserung von lasergeschweißten Nähten.

Dadurch kann das Laserschweißen von Textilien, eine alternative und zukunftsweisende aber noch junge Fügetechnik, breiter eingesetzt werden. Besonders bei der Produktion von technischen und medizinischen Textilien ist dadurch eine deutliche Qualitätsverbesserung gegenüber herkömmlichen Lösungen zu erwarten.

Das Laserschweißen von Textilien bietet eine Reihe von Vorteilen gegenüber dem traditionellen Nähen mit Nadel und Faden. Es ermöglicht eine Verbesserung der Produktqualität insbesondere bei der Verarbeitung großflächiger technischer Textilien. Die durch das Schweißen hergestellten Nähte sind flach, dehnbar, flexibel, absolut dicht gegenüber Flüssigkeiten und Gasen und überzeugen durch eine hohe Zugfestigkeit. Herkömmliche Nahtfehler werden vermieden und die Qualität des Schweißprozesses lässt sich online automatisch überwachen.

In vielen technischen Anwendungsbereichen wie Medizintextilien, Schutzbekleidung, Textilien für den Fahrzeugbau, Möbelherstellung und Outdoorprodukte werden diese Eigenschaften gefordert und würden die bislang sehr aufwändige Überprüfung der Produktqualität der Fügestellen während und nach den Herstellungsprozessen minimieren.

Eine Herausforderung der noch relativ jungen und wenig verbreiteten Methode, bei der ein Infrarot-Laser zum Einsatz kommt, ist, dass nur wenige Textilien aus thermoplastischem Fasermaterial im Bereich des nahen infraroten Lichtes die Laserstrahlung absorbieren. Das erfordert bei vielen Textilien den Einsatz von Absorbern, die speziell das infrarote Licht absorbieren. Diese Substanzen ihrerseits verursachen jedoch Verfärbungen und farbliche Beeinträchtigungen der Fügestellen. Diese Eigenschaft erschwert die Anwendung des Laserschweißens insbesondere bei hellen und durchsichtigen Textilien.

Im Rahmen des laufenden Forschungsprojekts sollen nun diese neuen Absorbersysteme entwickelt und systematisch untersucht werden.

Die neuen Formulierungen sollen einfach und materialsparend anwendbar, mit dem textilen Material kompatibel sein und die gewünschten Anforderungen möglichst umfassend erfüllen. Es sollen, besonders bei hellen und durchsichtigen Textilien, optisch und mechanisch einwandfreie Fügestellen mit hohen Gebrauchseigenschaften entstehen.

Zusätzlich werden die Einstellungsparameter für das Laserschweißen wie Temperatur, Geschwindigkeit und Druck auf die Absorber angepasst. Das ermöglicht den konfektionierenden Betrieben, den Prozess unmittelbar auf eigene Materialien und die eigene Produktpalette anzuwenden.

Diese neue Fügetechnik eignet sich sowohl für die Einzelfertigung als auch zur Fertigung mit hohem Automatisierungsgrad. Die Minimierung der Prozessschritte und die Erhöhung der Prozessqualität ermöglicht Umsatzsteigerungen der klein- und mittelständischen Unternehmen und verschafft Ihnen Wettbewerbsvorteile gegenüber herkömmlichen textilen Fügetechniken.
Ansprechpartner:
Hohenstein Institute
Dr. Edith Claßen
e.classen@hohenstein.de

Rose-Marie Riedl | idw
Weitere Informationen:
http://www.hohenstein.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie