Die Mathematik fliegt mit

Zur Stabilität trägt sie allerdings nicht bei, weshalb Konstrukte, die möglichst leicht und doch belastbar sein sollen, das richtige Verhältnis von Löchern und tragenden Teilen aufweisen müssen. Besonders wichtig ist das im Bereich der Luftfahrt, wo Gewichtsreduktion den Energieverbrauch erheblich senken kann, aber auch die Sicherheit vorrangig zu bedenken ist.

Ein EU-Projekt zur softwaregestützten Designoptimierung von Flugzeugen unter Beteiligung von Mathematikern der Universität Erlangen-Nürnberg kommt derzeit in seine Endphase.

„Die EU-Förderung schuf wesentliche Voraussetzungen für diese außergewöhnlich erfolgreiche Entwicklung“, betont Prof. Dr. Günter Leugering, Inhaber des Lehrstuhls für Angewandte Mathematik II, der in Erlangen gemeinsam mit Prof. Dr. Michael Stingl, Juniorprofessor für Mathematische Optimierung, die Thematik bearbeitet. Weitere Forscherteams aus Bayreuth, Haifa (Israel), Birmingham (Großbritannien) und Lyngby (Dänemark) sowie die Industrieunternehmen EADS, Airbus UK, Altair, RISK und Eurocopter sind an dem seit drei Jahren laufenden Projekt PLATO-N beteiligt. Der Projektname steht für „Platform for Topology Optimization“; gefördert wird das Forschungsvorhaben seit 2006 im 6. Rahmenprogramm der Europäischen Union als „Special Targeted Research Program“ (STREP).

Riese mit schlankem Design
PLATO-N baut auf einem Vorläuferprojekt aus dem 90er Jahren auf. Als der Airbus 380, das größte Flugzeug der Welt, geplant wurde, war eines klar: Das Gewicht musste extrem gering gehalten werden, damit der Riese überhaupt eine Chance hatte abzuheben. Das bedeutete für das Produktdesign eine drastische Materialreduktion. Löcher in die Konstruktion einzuplanen, bot sich als Lösung an, doch wie sollten Funktionalität und Sicherheit dabei gewahrt bleiben?

„The art of structure is where to put he holes“, erkannte schon der preisgekrönte französische Architekt Robert Le Ricolais, der Mitte der 30er Jahre das Prinzip leichter, tragender Außenhautkonstruktionen in die Bauindustrie einführen wollte. Dieser ebenso geniale wie einfache Gedankengang enthält aber keine „Lehre zum technischen Handeln“, wie es die Patentanwälte verlangen. Abhilfe schafft hier die mathematische Abstraktion. Mathematisches „Bohren“, ganz ohne Werkzeug und Material, ist der beste Weg, um herauszufinden, wo Löcher risikolos in eine Flugzeugkonstruktion gesetzt werden können, auch wenn das erst auf den zweiten Blick klar wird. Design wird heutzutage auf dem Bildschirm entworfen, in einer virtuellen Realität, in der man keine realen Materialien herausschneiden oder aufbohren muss. „Loch oder Nicht-Loch?“, „Viel oder wenig Material?“ wird zu einer mathematischen Frage.

Sensationelle Gewichtsersparnis
Diese Gedanken beflügelten Wissenschaftler von EADS-München, mit Mathematikern der Universitäten Bayreuth und Erlangen-Nürnberg Codes zu entwickeln, die eine Form- und Topologieoptimierung für den Airbus 380, genauer für die vordere Rippe als wichtigen Teil des Flügels, möglich machen. Mit diesen Codes konnten bis zu 33% Gewichtsersparnis in der realen Struktur erreicht werden, die nach einem langwierigen Umsetzungsprozess der Öffentlichkeit präsentiert wurde. Seit 2006 fliegt der Airbus 380 – und die Mathematik fliegt mit.

Nach diesem sensationellen Erfolg sollten die Ideen der Strukturoptimierung softwarebasiert ausgebaut und gefestigt werden, um sie auf andere Technologien anzuwenden. Der Weg zum EU-Projekt PLATO-N war geebnet: Eine Simulationsplattform wurde angestrebt, die Topologieoptimierungsprobleme in der aerodynamischen Praxis löst. Die fünf Forscherteams haben in den vergangenen drei Jahren auf der Basis mathematischer Theorien ein umfangreiches Softwarepaket erarbeitet, das jetzt der Öffentlichkeit vorgestellt wird. Im Industriedesign und im Leichtbau werden so neue Dimensionen eröffnet. Als „spin-off“ der im EU-Projekt erarbeiteten Technologie können nun auch Materialschäume und andere komplexe Materialien in ihrer Funktionalität struktur-optimiert werden. Dieser neue Zugang wird gegenwärtig im „Center for Multiscale Modeling and Simulation“ im Exzellenzcluster „Engineering of Advanced Materials“ der Universität erforscht. Prof Leugering ist überzeugt: „Mathematik als Katalysator wurde und wird in Zukunft verstärkt im interdisziplinären Verbund praxisrelevant!“

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 27.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel „familiengerechte Hochschule“.

Weitere Informationen für die Medien:

Prof. Dr. Günter Leugering
Tel.: 09131/85-27509
leugering@am.uni-erlangen.de

Media Contact

Ute Missel idw

Weitere Informationen:

http://www.uni-erlangen.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer