Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Materialwissenschaftler forscht an nachhaltiger Entsalzungsmethode für Wasser

24.04.2014

Eine verbesserte Entsalzungsmethode, die über 95 Prozent Wirkungsgrad aufweist und dabei ohne Chemie auskommt:

Daran forscht Volker Presser, Junior-Professor an der Universität des Saarlandes und Juniorforschungsgruppenleiter am Leibniz-Institut für Neue Materialien. Zusammen mit anderen kapazitiven Technologien, die ähnlich funktionieren, könnte so ein wirklich grüner Weg entstehen, um regenerative Energie zu speichern und die Wasserversorgung dezentral zu organisieren.


Das Schaubild erklärt die grundlegende Wirkungsweise der Entsalzungsmethode, die Volker Presser erforscht.

Grafik: Volker Presser

Es klingt nach einer Technologie, die eigentlich zu schön ist, um wahr zu sein: Bei der kapazitiven Entionisierung wird aus Brackwasser oder Salzwasser Trinkwasser gewonnen. Außerdem dient die Technologie in etwas abgewandelter Form auch als Grundlage für die hocheffiziente Energiespeicherung aus regenerativen Quellen wie zum Beispiel Solaranlagen. Und es ist sogar möglich, aus einem Konzentrationsgefälle hiermit Energie zu erzeugen. Ist das etwa die eierlegende Wollmilchsau der modernen Technologie? Nicht ganz, aber nah dran.

„Kapazitive Technologien sind vielversprechend, stecken aber noch in den Kinderschuhen“, erklärt Volker Presser, der an der Saar-Uni und am INM – Leibniz-Institut für Neue Materialien auf dem Saarbrücker Uni-Campus an neuen Energie-Materialien forscht. „Aber es ist eine extrem energieeffiziente und wirklich grüne Technologie“, erklärt der junge Forscher.

Das Grundprinzip, das seinem Versuchsaufbau zugrunde liegt, kommt ganz ohne chemische Reaktionen aus. Zwischen zwei Elektroden aus poröser Aktivkohle, an die eine Spannung angelegt wird, fließt Brack- oder Salzwasser. Die positiv geladene Elektrode zieht dabei die negativ geladenen Ionen aus dem Wasser, die gegenüberliegende negativ geladene Elektrode hingegen zieht die positiv geladenen Teilchen aus dem Wasser. Es werden also nur die Bestandteile aus dem Wasser herausgeholt, die nicht drinnen sein sollen.

Gespeichert werden die geladenen Teilchen in den Poren der Aktivkohle, am Ende der Strecke fließt schließlich frisches Süßwasser heraus. Bis zu 80 Prozent Wirkungsgrad hat diese Technologie. Kombiniert man dieses simple physikalische Prinzip mit einer Membran, die zwischen Wasser und Kohlenelektrode platziert wird und die entweder nur negativ oder nur positiv geladene Teilchen durchlässt, erhöht sich der Wirkungsgrad der Anordnung sogar auf über 95 Prozent.

„Durch eine solche Membran kann man also deutlich mehr ‚Salz pro investierter Energie‘ herausfiltern als ohne Membran“, erklärt Materialforscher Volker Presser. Ist eine Elektrode „voll“, also mit Ionen gesättigt, lässt sie sich ganz einfach wieder ausspülen, und man erhält eine hochkonzentrierte Salzlösung.

Doch die Technologie ist nicht nur auf Salz beschränkt. Dies verdeutlicht Volker Presser an einem Beispiel: „China und Südafrika forschen intensiv an dieser Technologie. Interessant ist das in diesen Ländern vor allem wegen der Aufbereitung des Grubenwassers im Bergbau. Zum einen wird das Abwasser viel sauberer, zum anderen kann die hochangereicherte Flüssigkeit als Rohstoff dienen – denken Sie an mit Edelmetallen angereichertes Wasser, das für die Industrie noch wertvolle Rohstoffe enthalten kann.“

Volker Pressers Ansatz für eine Nutzung dieser Technologie ist jedoch sehr breit ausgelegt. „In Kombination mit Solarzellen und kapazitiven Energiespeichern – so genannte Superkondensatoren – könnte damit eine ‚Island Technology‘ entstehen“, erklärt er. Haushalte könnten damit ihren Sonnenstrom selbst speichern und ihr eigenes Trinkwasser gewinnen. „Dadurch ist eine unabhängige, vollständig regenerative Versorgung mit Energie und Wasser für einzelne Haushalte möglich“, erklärt er. Superkondensatoren als Energiespeicher sind ein anderer Teil der Forschungen des jungen Saar-Forschers.

Noch steckt die Technologie zur Wasseraufbereitung im Experimentierstadium. Es gibt zwar schon einige wenige Anbieter, die Entsalzungsanlagen anbieten. Diese sind aber noch sehr selten und sehr teuer. Volker Presser hält die Technologie dennoch für zukunftsträchtig: „Wenn die Frage nach den Erfolgsaussichten dieser so neuartigen Technologie gestellt wird, halte ich es mit Winston Churchill, der gesagt haben soll: ‚Welchen Sinn hat ein neugeborenes Baby?‘ Die Zeit wird zeigen, was die Technologie wirklich leisten kann.“

Kontakt:
Jun.-Prof. Dr. Volker Presser
Tel.: (0681) 9300177
E-Mail: volker.presser@inm-gmbh.de

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610).

Thorsten Mohr | Universität des Saarlandes
Weitere Informationen:
http://www.inm-gmbh.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie