Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Materialforschung mit Antiteilchen: Dem Geheimnis nanokristalliner Materialien auf der Spur

29.11.2010
Bestimmte Defekte in der Materialstruktur sind dafür verantwortlich, dass neuartige nanokristalline Massivmetalle gleichzeitig sehr hart und trotzdem gut verformbar sind.

Da diese Defekte auf der atomaren Ebene der Metallstruktur vorkommen, sind sie experimentell schwer untersuchbar. Jetzt sind österreichische ForscherInnen im Verständnis dieser atomaren Defekte einen wesentlichen Schritt weitergekommen.


Bei nanokristallinen Massivmetalle sollte keine Ordnung herrschen. Defekte in ihrer Kristallstruktur tragen zu ihren ungewöhnlichen Eigenschaften bei. Wolfgang Sprengel

Gelungen ist dieser Schritt in einem vom Wissenschaftsfonds FWF unterstützten Projekt durch Kombination zweier spezieller Methoden. Die Ergebnisse wurden nun in der renommierten wissenschaftlichen Zeitschrift Physical Review Letters veröffentlicht.

Sie sind außerordentlich hart und lassen sich dennoch leicht verformen. Mit diesen besonderen Merkmalen werfen die sogenannten nanokristallinen Massivmetalle für die Physik viele Fragen auf. Nun ist es ForscherInnen an der TU Graz gelungen, einige der Fragen experimentell zu beantworten.

Die WissenschafterInnen stellten sich der Herausforderung, die Veränderungen der Metallstruktur in Echtzeit mitzuverfolgen. Dadurch konnten sie nachweisen, dass atomare Defekte eine zentrale Ursache der interessanten physikalischen Eigenschaften sind. Nanokristalline Metalle setzen sich aus unzähligen Kristalliten bzw. Körnern zusammen, die meist kleiner sind als hundert Nanometer – je kleiner die Körner, desto fester das Metall. Eigentlich ist die Struktur von nanokristallinen Metallen sehr regelmäßig: Die Atome in den Kristallen liegen schichtweise dicht gepackt in Reih und Glied.

Doch bei der Herstellung der Metalle schleichen sich atomare Defekte ein, die diese Ordnung brechen. So liegen beispielsweise bestimmte Schichten nicht direkt übereinander bzw. einige Atome fehlen oder Reihen sind gegeneinander versetzt. Österreichische MaterialphysikerInnen haben nun erstmals den direkten experimentellen Nachweis für diese Effekte erbracht, die in engstem Zusammenhang mit den mechanischen Eigenschaften stehen. Dieses Ergebnis haben sie jetzt in der Fachzeitschrift Physical Review Letters veröffentlicht und dabei beschrieben, wie durch Kombination zweier spezieller Methoden die atomaren Defekte genau unter die Lupe genommen wurden.

Metall unter Spionage-Angriff
Da atomare Defekte im Nanobereich nicht ohne Weiteres sichtbar sind, arbeiteten die ForscherInnen mit sogenannten Positronen, wie Dr. Wolfgang Sprengel von der TU Graz erklärt: "Ein Positron ist ein Elementarteilchen, das dem Elektron vollständig gleicht – bis auf die elektrische Ladung. Das Positron ist positiv geladen. Treffen nun ein Positron und ein Elektron aufeinander, löschen sie sich gegenseitig aus und zerstrahlen. An jenen Stellen, wo atomare Defekte vorliegen, gibt es weniger Elektronen und damit auch weniger Zerstrahlungsereignisse. Die Positronen dienen also quasi als Spione, die detaillierte Auskunft über die atomaren Defekte geben. Diesen Effekt haben wir ausgenutzt, um schnelle Prozesse dieser atomaren Defekte im Metall aufzuklären." Hierzu griffen die WissenschafterInnen auf die Unterstützung des Forschungsreaktors FRM II der TU München zurück, wo sie den Positronenstrahl mit der weltweit höchsten Intensität nutzten.
Zwei Methoden. Ein Ergebnis
Zusätzlich zur Positron-Elektron-Zerstrahlung maßen die WissenschafterInnen noch die makroskopische Längenänderung beim Verschwinden der Defekte – mithilfe der sogenannten Dilatometrie. Eine Kombination mit der Positron-Elektron-Zerstrahlung ist bislang einmalig und lieferte den Nachweis, dass einige der geheimnisvoll anmutenden physikalischen Eigenschaften der nanokristallinen Massivmetalle auf diese Strukturfehler zurückzuführen sind. Ursächlich für diese Defekte ist die Herstellungsgeschichte der Metalle. Für die Produktion von nanokristallinen Massivmetallen sind aufwendige Verfahren nötig – wie zum Beispiel Hochdruck-Torsion (Erich-Schmidt-Institut Leoben). Dabei entstehen die atomaren Defekte.

Das FWF-Projekt unter der Leitung von Univ.-Prof. Dr. Roland Würschum erfolgt in enger Zusammenarbeit mit der Universität Wien und dem Erich-Schmidt-Institut in Leoben und hat auch eine enge Anbindung an das nationale Forschungsnetzwerk (NFN) zu nanokristallinen Massivmetallen. Das dadurch gewonnene umfassende Verständnis der Grundlagen ist die Voraussetzung für eine erfolgreiche Anwendung dieser neuartigen Materialien.

Originalpublikation:
In situ probing of fast defect annealing in Cu and Ni with a high-intensity positron beam. B. Oberdorfer, E-M. Steyskal, W. Sprengel, W. Puff, P. Pikart, C. Hugenschmidt, M. Zehetbauer, R. Pippan, R. Wüschum. Published September 28, 2010. Physical Review Letters 105, 146101. DOI: 10.1103/PhysRevLett.105.146101.
Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Roland Würschum
Technische Universität Graz
Institut für Materialphysik
Petersgasse 16/IV
8010 Graz
T +43 / 316 / 873 - 8481
E wuerschum@tugraz.at
Der Wissenschaftsfonds FWF
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Redaktion & Aussendung
PR&D - Public Relations für Forschung & Bildung
Mariannengasse 8
1090 Wien
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Maria Fraczek | PR&D
Weitere Informationen:
http://www.fwf.ac.at
http://www.tugraz.at

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung