Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Materialforschung mit Antiteilchen: Dem Geheimnis nanokristalliner Materialien auf der Spur

29.11.2010
Bestimmte Defekte in der Materialstruktur sind dafür verantwortlich, dass neuartige nanokristalline Massivmetalle gleichzeitig sehr hart und trotzdem gut verformbar sind.

Da diese Defekte auf der atomaren Ebene der Metallstruktur vorkommen, sind sie experimentell schwer untersuchbar. Jetzt sind österreichische ForscherInnen im Verständnis dieser atomaren Defekte einen wesentlichen Schritt weitergekommen.


Bei nanokristallinen Massivmetalle sollte keine Ordnung herrschen. Defekte in ihrer Kristallstruktur tragen zu ihren ungewöhnlichen Eigenschaften bei. Wolfgang Sprengel

Gelungen ist dieser Schritt in einem vom Wissenschaftsfonds FWF unterstützten Projekt durch Kombination zweier spezieller Methoden. Die Ergebnisse wurden nun in der renommierten wissenschaftlichen Zeitschrift Physical Review Letters veröffentlicht.

Sie sind außerordentlich hart und lassen sich dennoch leicht verformen. Mit diesen besonderen Merkmalen werfen die sogenannten nanokristallinen Massivmetalle für die Physik viele Fragen auf. Nun ist es ForscherInnen an der TU Graz gelungen, einige der Fragen experimentell zu beantworten.

Die WissenschafterInnen stellten sich der Herausforderung, die Veränderungen der Metallstruktur in Echtzeit mitzuverfolgen. Dadurch konnten sie nachweisen, dass atomare Defekte eine zentrale Ursache der interessanten physikalischen Eigenschaften sind. Nanokristalline Metalle setzen sich aus unzähligen Kristalliten bzw. Körnern zusammen, die meist kleiner sind als hundert Nanometer – je kleiner die Körner, desto fester das Metall. Eigentlich ist die Struktur von nanokristallinen Metallen sehr regelmäßig: Die Atome in den Kristallen liegen schichtweise dicht gepackt in Reih und Glied.

Doch bei der Herstellung der Metalle schleichen sich atomare Defekte ein, die diese Ordnung brechen. So liegen beispielsweise bestimmte Schichten nicht direkt übereinander bzw. einige Atome fehlen oder Reihen sind gegeneinander versetzt. Österreichische MaterialphysikerInnen haben nun erstmals den direkten experimentellen Nachweis für diese Effekte erbracht, die in engstem Zusammenhang mit den mechanischen Eigenschaften stehen. Dieses Ergebnis haben sie jetzt in der Fachzeitschrift Physical Review Letters veröffentlicht und dabei beschrieben, wie durch Kombination zweier spezieller Methoden die atomaren Defekte genau unter die Lupe genommen wurden.

Metall unter Spionage-Angriff
Da atomare Defekte im Nanobereich nicht ohne Weiteres sichtbar sind, arbeiteten die ForscherInnen mit sogenannten Positronen, wie Dr. Wolfgang Sprengel von der TU Graz erklärt: "Ein Positron ist ein Elementarteilchen, das dem Elektron vollständig gleicht – bis auf die elektrische Ladung. Das Positron ist positiv geladen. Treffen nun ein Positron und ein Elektron aufeinander, löschen sie sich gegenseitig aus und zerstrahlen. An jenen Stellen, wo atomare Defekte vorliegen, gibt es weniger Elektronen und damit auch weniger Zerstrahlungsereignisse. Die Positronen dienen also quasi als Spione, die detaillierte Auskunft über die atomaren Defekte geben. Diesen Effekt haben wir ausgenutzt, um schnelle Prozesse dieser atomaren Defekte im Metall aufzuklären." Hierzu griffen die WissenschafterInnen auf die Unterstützung des Forschungsreaktors FRM II der TU München zurück, wo sie den Positronenstrahl mit der weltweit höchsten Intensität nutzten.
Zwei Methoden. Ein Ergebnis
Zusätzlich zur Positron-Elektron-Zerstrahlung maßen die WissenschafterInnen noch die makroskopische Längenänderung beim Verschwinden der Defekte – mithilfe der sogenannten Dilatometrie. Eine Kombination mit der Positron-Elektron-Zerstrahlung ist bislang einmalig und lieferte den Nachweis, dass einige der geheimnisvoll anmutenden physikalischen Eigenschaften der nanokristallinen Massivmetalle auf diese Strukturfehler zurückzuführen sind. Ursächlich für diese Defekte ist die Herstellungsgeschichte der Metalle. Für die Produktion von nanokristallinen Massivmetallen sind aufwendige Verfahren nötig – wie zum Beispiel Hochdruck-Torsion (Erich-Schmidt-Institut Leoben). Dabei entstehen die atomaren Defekte.

Das FWF-Projekt unter der Leitung von Univ.-Prof. Dr. Roland Würschum erfolgt in enger Zusammenarbeit mit der Universität Wien und dem Erich-Schmidt-Institut in Leoben und hat auch eine enge Anbindung an das nationale Forschungsnetzwerk (NFN) zu nanokristallinen Massivmetallen. Das dadurch gewonnene umfassende Verständnis der Grundlagen ist die Voraussetzung für eine erfolgreiche Anwendung dieser neuartigen Materialien.

Originalpublikation:
In situ probing of fast defect annealing in Cu and Ni with a high-intensity positron beam. B. Oberdorfer, E-M. Steyskal, W. Sprengel, W. Puff, P. Pikart, C. Hugenschmidt, M. Zehetbauer, R. Pippan, R. Wüschum. Published September 28, 2010. Physical Review Letters 105, 146101. DOI: 10.1103/PhysRevLett.105.146101.
Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Roland Würschum
Technische Universität Graz
Institut für Materialphysik
Petersgasse 16/IV
8010 Graz
T +43 / 316 / 873 - 8481
E wuerschum@tugraz.at
Der Wissenschaftsfonds FWF
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Redaktion & Aussendung
PR&D - Public Relations für Forschung & Bildung
Mariannengasse 8
1090 Wien
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Maria Fraczek | PR&D
Weitere Informationen:
http://www.fwf.ac.at
http://www.tugraz.at

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie