Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Materialforschung mit Antiteilchen: Dem Geheimnis nanokristalliner Materialien auf der Spur

29.11.2010
Bestimmte Defekte in der Materialstruktur sind dafür verantwortlich, dass neuartige nanokristalline Massivmetalle gleichzeitig sehr hart und trotzdem gut verformbar sind.

Da diese Defekte auf der atomaren Ebene der Metallstruktur vorkommen, sind sie experimentell schwer untersuchbar. Jetzt sind österreichische ForscherInnen im Verständnis dieser atomaren Defekte einen wesentlichen Schritt weitergekommen.


Bei nanokristallinen Massivmetalle sollte keine Ordnung herrschen. Defekte in ihrer Kristallstruktur tragen zu ihren ungewöhnlichen Eigenschaften bei. Wolfgang Sprengel

Gelungen ist dieser Schritt in einem vom Wissenschaftsfonds FWF unterstützten Projekt durch Kombination zweier spezieller Methoden. Die Ergebnisse wurden nun in der renommierten wissenschaftlichen Zeitschrift Physical Review Letters veröffentlicht.

Sie sind außerordentlich hart und lassen sich dennoch leicht verformen. Mit diesen besonderen Merkmalen werfen die sogenannten nanokristallinen Massivmetalle für die Physik viele Fragen auf. Nun ist es ForscherInnen an der TU Graz gelungen, einige der Fragen experimentell zu beantworten.

Die WissenschafterInnen stellten sich der Herausforderung, die Veränderungen der Metallstruktur in Echtzeit mitzuverfolgen. Dadurch konnten sie nachweisen, dass atomare Defekte eine zentrale Ursache der interessanten physikalischen Eigenschaften sind. Nanokristalline Metalle setzen sich aus unzähligen Kristalliten bzw. Körnern zusammen, die meist kleiner sind als hundert Nanometer – je kleiner die Körner, desto fester das Metall. Eigentlich ist die Struktur von nanokristallinen Metallen sehr regelmäßig: Die Atome in den Kristallen liegen schichtweise dicht gepackt in Reih und Glied.

Doch bei der Herstellung der Metalle schleichen sich atomare Defekte ein, die diese Ordnung brechen. So liegen beispielsweise bestimmte Schichten nicht direkt übereinander bzw. einige Atome fehlen oder Reihen sind gegeneinander versetzt. Österreichische MaterialphysikerInnen haben nun erstmals den direkten experimentellen Nachweis für diese Effekte erbracht, die in engstem Zusammenhang mit den mechanischen Eigenschaften stehen. Dieses Ergebnis haben sie jetzt in der Fachzeitschrift Physical Review Letters veröffentlicht und dabei beschrieben, wie durch Kombination zweier spezieller Methoden die atomaren Defekte genau unter die Lupe genommen wurden.

Metall unter Spionage-Angriff
Da atomare Defekte im Nanobereich nicht ohne Weiteres sichtbar sind, arbeiteten die ForscherInnen mit sogenannten Positronen, wie Dr. Wolfgang Sprengel von der TU Graz erklärt: "Ein Positron ist ein Elementarteilchen, das dem Elektron vollständig gleicht – bis auf die elektrische Ladung. Das Positron ist positiv geladen. Treffen nun ein Positron und ein Elektron aufeinander, löschen sie sich gegenseitig aus und zerstrahlen. An jenen Stellen, wo atomare Defekte vorliegen, gibt es weniger Elektronen und damit auch weniger Zerstrahlungsereignisse. Die Positronen dienen also quasi als Spione, die detaillierte Auskunft über die atomaren Defekte geben. Diesen Effekt haben wir ausgenutzt, um schnelle Prozesse dieser atomaren Defekte im Metall aufzuklären." Hierzu griffen die WissenschafterInnen auf die Unterstützung des Forschungsreaktors FRM II der TU München zurück, wo sie den Positronenstrahl mit der weltweit höchsten Intensität nutzten.
Zwei Methoden. Ein Ergebnis
Zusätzlich zur Positron-Elektron-Zerstrahlung maßen die WissenschafterInnen noch die makroskopische Längenänderung beim Verschwinden der Defekte – mithilfe der sogenannten Dilatometrie. Eine Kombination mit der Positron-Elektron-Zerstrahlung ist bislang einmalig und lieferte den Nachweis, dass einige der geheimnisvoll anmutenden physikalischen Eigenschaften der nanokristallinen Massivmetalle auf diese Strukturfehler zurückzuführen sind. Ursächlich für diese Defekte ist die Herstellungsgeschichte der Metalle. Für die Produktion von nanokristallinen Massivmetallen sind aufwendige Verfahren nötig – wie zum Beispiel Hochdruck-Torsion (Erich-Schmidt-Institut Leoben). Dabei entstehen die atomaren Defekte.

Das FWF-Projekt unter der Leitung von Univ.-Prof. Dr. Roland Würschum erfolgt in enger Zusammenarbeit mit der Universität Wien und dem Erich-Schmidt-Institut in Leoben und hat auch eine enge Anbindung an das nationale Forschungsnetzwerk (NFN) zu nanokristallinen Massivmetallen. Das dadurch gewonnene umfassende Verständnis der Grundlagen ist die Voraussetzung für eine erfolgreiche Anwendung dieser neuartigen Materialien.

Originalpublikation:
In situ probing of fast defect annealing in Cu and Ni with a high-intensity positron beam. B. Oberdorfer, E-M. Steyskal, W. Sprengel, W. Puff, P. Pikart, C. Hugenschmidt, M. Zehetbauer, R. Pippan, R. Wüschum. Published September 28, 2010. Physical Review Letters 105, 146101. DOI: 10.1103/PhysRevLett.105.146101.
Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Roland Würschum
Technische Universität Graz
Institut für Materialphysik
Petersgasse 16/IV
8010 Graz
T +43 / 316 / 873 - 8481
E wuerschum@tugraz.at
Der Wissenschaftsfonds FWF
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
Redaktion & Aussendung
PR&D - Public Relations für Forschung & Bildung
Mariannengasse 8
1090 Wien
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Maria Fraczek | PR&D
Weitere Informationen:
http://www.fwf.ac.at
http://www.tugraz.at

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Der gestapelte Farbsensor
17.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Gefragtes Werkstoff-Knowhow: Fraunhofer LBF baut Elastomer-Forschung aus
16.11.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte