Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Materialforscher stoppen Verschleiß an Produktionsanlagen der Elektronikindustrie

04.10.2012
Elektronische Leiterplatten sind das zentrale Bauelement von jedem Handy, Fernseher und Computer. Wie ein Nervensystem vernetzen sie die Mikrochips und versorgen sie mit elektrischer Energie.

Bei ihrer Herstellung werden große Leiterplatten mit Hilfe von Strom in Säurebädern, den Elektrolyten, verkupfert. Einzelne Maschinenteile aus Titan verschleißen dabei in kurzer Zeit. Ihr Austausch verursacht hohe Kosten.

Saarbrücker Materialforscher haben jetzt ein Verfahren entwickelt, bei dem sich die beschädigten Bauteile im laufenden Betrieb selbst heilen. Die Firma Atotech, die weltweit rund 90 Prozent aller Leiterplatten für Smartphones behandelt, spart damit mehrere Millionen Euro jährlich.

Für dieses neue, zum Patent angemeldete Verfahren hat die Steinbeis-Stiftung in Stuttgart das Forscherteam von Professor Frank Mücklich gemeinsam mit der Firma Atotech mit dem Transferpreis der Steinbeis-Stiftung 2012 ausgezeichnet. Damit wird jedes Jahr der erfolgreichste Transfer von Technologien in die industrielle Anwendung gewürdigt.

Elektronische Bauelemente werden immer kleiner und leistungsfähiger und müssen gleichzeitig vielfältig miteinander vernetzt werden. „Eine elektronische Leiterplatte ist heute ein äußerst komplexes, dreidimensionales Gebilde, das wie ein zentrales Nervensystem alle einzelnen Bauteile verknüpft“, sagt Frank Mücklich, Professor für Funktionswerkstoffe der Universität des Saarlandes und Leiter des Steinbeis-Forschungszentrums für Werkstofftechnik (MECS). Für die großflächige und äußerst präzise Fertigung von Leiterplatten wird das Galvanik-Verfahren genutzt. Die Leiterplatte wird dabei in eine kupferhaltige Säure, den Elektrolyt, getaucht. Dann fließt extrem starker elektrischer Strom durch die Platte und transportiert das Kupfer auf die Oberfläche und in winzige Bohrlöcher, die für spätere Bauteile und Kontakte vorgesehen sind. „Die Leiterplatte wird dadurch mit einer gleichmäßigen, hauchdünnen Kupferschicht überzogen, die dünner ist als ein Zehntel des Durchmessers eines menschlichen Haares“, erklärt der Materialforscher.
Die Leiterplatten werden dabei von säureresistenten Titanklammern gehalten, die den Strom auf die Platte leiten. „Diese Halterungen müssen eine enorme elektrische Energie auf wenigen Quadratmillimetern aushalten. Der extrem starke Strom schädigt sie bei jedem Durchlauf durch Funkenbildung, ähnlich wie ein Blitzeinschlag“, beschreibt Frank Mücklich das grundsätzliche Problem von modernen Galvanik-Anlagen. Die Saarbrücker Materialforscher untersuchten diese Schädigungsvorgänge nicht nur im Elektronenmikroskop, sondern mit Hilfe von Tomographen auch in Nanodimensionen und sogar auf atomarer Ebene. „Wir mussten dabei erkennen, dass die bisherige Strategie, immer neue Werkstoffe mit noch höherer Widerstandskraft gegen diese zerstörerischen, viele tausend Grad heißen Funken zu entwickeln, nicht zum Erfolg führt“, erläutert Mücklich. Denn auch sehr teure Edelmetalle wie Platin konnten diesen Prozess letztlich nur verzögern, aber nicht aufhalten. Stattdessen fanden die Materialforscher gemeinsam mit den Ingenieuren der Firma Atotech ein äußerst sparsames und zuverlässiges Verfahren. „Dieses ähnelt der Heilung von Wunden, mit der unser Körper zeitlebens die Haut regeneriert“, vergleicht der Materialforscher.

Wie in einem Karussell wandern die geschädigten Kontakte jetzt in der Produktionsanlage im Kreis herum und werden genauso wie die Leiterplatten immer wieder mit einer neuen dünnen Kupferschicht überzogen. „Damit erzeugen wir eine recycelbare Verschleißschicht auf den Kontakten, heilen aufgetretene Schäden sofort aus und verbessern ganz nebenbei sogar die Leitfähigkeit der Halterungen um ein Vielfaches“, sagt Frank Mücklich. Durch das neue Verfahren müssen die Halterungen in Zukunft nicht mehr aufwändig an den vielen Produktionsstätten ausgebaut und ersetzt werden. Die Produktion kann dadurch ohne Unterbrechungen durchlaufen. „Mit dieser Technik spart die Firma Atotech, die als Marktführer weltweit über 600 Anlagen dieser Art betreibt, mehrere Millionen Euro pro Jahr ein“, sagt Diplomingenieur Bernd Schmitt, der für das Unternehmen das Forschungsprojekt begleitet hat. Das Verfahren hat die Firma Atotech mittlerweile gemeinsam mit den Saarbrücker Wissenschaftlern zum Patent angemeldet.

Das Verfahren entwickelte der Materialforscher Frank Mücklich mit seinen Mitarbeitern Dominik Britz und Christian Selzner im Laufe eines Jahres. Im Steinbeis-Forschungszentrum auf dem Uni-Campus baute die Firma Atotech dafür extra eine tonnenschwere Testanlage auf. Zuerst analysierten die Wissenschaftler mit neuen dreidimensionalen Verfahren, was sich im Inneren der Titankontakte während des Galvanisierungsprozesses abspielt. „Dafür haben wir hoch auflösende Elektronenmikroskope sowie die Nano-Tomographie und Atomsonden-Tomographie eingesetzt. Die dabei erfassten Bildserien werden anschließend im Computer wieder zum exakten räumlichen Abbild zusammengefügt – bis hin zum einzelnen Atom“, erläutert Professor Mücklich.

Bei der Suche nach robusteren Materialien während der Projektphase setzten die Wissenschaftler auch das Laserstrahlauftragsschweißen (Lasercladding) ein, um in mikroskopischen Lagen verschiedene Materialien auf die Titankontakte aufzutragen. Außerdem strukturierten sie die Oberflächen der Klammern mit dem so genannten Laserinterferenz-Verfahren, um die Oberfläche zu verändern und auf diesem Weg eine widerstandsfähigere Klammer zu erzeugen. Damit konnten sie die Eigenschaften des Ausgangsmaterials Titan zwar wesentlich verbessern. Es reichte jedoch nicht aus, um dauerhaft der enormen Beanspruchung in der Leiterplattenherstellung standzuhalten. „Diese Erkenntnis brachte uns auf die Idee, das im Vergleich dazu viel günstigere und im System schon vorhandene Kupfer als Opferschicht einzusetzen und während der Produktion laufend neu aufzutragen. Dies führte schließlich zum Erfolg dieses Forschungsprojekts“, freut sich Frank Mücklich. In Stuttgart erhielt er dafür jetzt gemeinsam mit seinen Mitarbeitern Dominik Britz und Christian Selzner und den verantwortlichen Mitarbeitern der Firma Atotech den mit bis zu 60.000 Euro dotierten Löhn-Preis der Steinbeis-Stiftung.

Hintergrund: Transferpreis der Steinbeis-Stiftung

Mit dem Löhn-Preis - Transferpreis der Steinbeis-Stiftung werden herausragende Transferprojekte des wettbewerblichen Technologie- und Wissenstransfers zwischen Wissenschaft und Wirtschaft ausgezeichnet. Als besonders preiswürdig werden die Transferprojekte betrachtet, die mit überdurchschnittlichem Erfolg durchgeführt und abgeschlossen wurden.
Die Steinbeis-Stiftung für Wirtschaftsförderung mit Hauptsitz in Stuttgart unterstützt Wissenschaftler beim Transfer ihrer Forschungsergebnisse in die Industrie. Rund 900 Steinbeis-Zentren in Deutschland und weltweit bilden den Steinbeis-Verbund, in dem Transfer-, Forschungs- und Beratungszentren auf ganz unterschiedlichen Fachgebieten zusammengefasst sind. Die Steinbeis-Stiftung hilft den Forschern bei ihrem unternehmerischen Wissens- und Technologietransfer und ist seit 2002 Kooperationspartner der Universität des Saarlandes.

Fragen beantwortet:

Prof. Dr. Frank Mücklich
Lehrstuhl für Funktionswerkstoffe der Universität des Saarlandes
Steinbeis-Forschungszentrum Material Engineering Center Saarland (MECS)
Tel. 0681/302-70500
Mail: muecke@matsci.uni-sb.de
Weitere Informationen:

http://www.uni-saarland.de/fuwe
http://www.mec-s.de
http://www.atotech.com/de
http://www.stw.de/wir-ueber-uns/loehn-preis

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie