Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Materialforscher klären, wie Nanostrukturen in Zinkoxid durch gezielte Dotierung beeinflusst werden

01.07.2013
Zinkoxid (ZnO)-basierte Halbleiter-Materialien werden aufgrund ihrer Kombination von elektrischen und optischen Eigenschaften in vielen technischen Anwendungen eingesetzt.

Durch die Zugabe von geeigneten Dotierungselementen lassen sich Materialstrukturen und –eigenschaften wie elektrische Leitfähigkeit, Lumineszenz oder Ferromagnetismus beeinflussen und optimieren. Sie sind abhängig von der Lage der Dotierungselemente im Zinkoxid-Gitter.

Wissenschaftler am INM – Leibniz-Institut für Neue Materialien haben nun herausgefunden welchen Einfluss zusätzliche Eisen- oder Indium-Ionen auf das Atomgitter des Zinkoxids haben.

Diese Erkenntnisse wurden jüngst in der Fachzeitschrift Ultramicroscopy veröffentlicht.

Die Wissenschaftler fanden heraus, dass dreiwertige Eisen- oder Indium-Ionen sich nicht statistisch regellos im ZnO-Kristall verteilen, sondern sich auf separaten Schichten innerhalb des Zinkoxids ausbilden. Diese „eingeschobenen“ Schichten, die jeweils aus einer einzigen Lage von Ionen bestehen, verändern die Struktur des gesamten Zinkoxids: Wo sich vorher Lagen von Zink- und Sauerstoff-Ebenen in der Reihenfolge abwechselten, führt die Präsenz einer Monolage von Dotierungsionen zu einem Stapelfehler und es wechseln sich nun Sauerstoff und Zink ab. „Das klingt zwar banal, bedeutet aber für das gesamte Gitter eine Umstrukturierung“, erklärt Herbert Schmid, Elektronenmikroskopiker am INM.

In Zinkoxid mit hexagonaler Kristallstruktur wird an diesen Grenzflächen die Richtung der c-Achse in die entgegengesetzte Orientierung gedreht; die atomaren Schichten der Dotierungselemente bilden sogenannte Inversions-Domänengrenzen. Gleichzeitig konnten die Forscher zeigen, dass sich diese Grenzflächen periodisch im Kristall anordnen und deren Abstand sich verändert, je nachdem, wie viele Dotierungselemente sich im Gitter befinden. „Die Abstände der Schichten werden kleiner, je mehr Eisen oder Indium in das Gitter aufgenommen wird“, sagt Schmid, „der Abstand dieser Defektebenen ist somit ein direktes Maß für die lokale Konzentration von Dotierungselementen.“

Außerdem wiesen die Wissenschaftler nach, dass die dreiwertigen Eisen- oder Indium-Ionen von je sechs Sauerstoff-Ionen umgeben sind und somit auf Oktaeder-Plätzen sitzen, während das zweiwertige Zink tetraedrisch koordiniert ist. Zur Analyse benutzten die Wissenschaftler ein hochauflösendes Raster-Transmissions-Elektronenmikroskop (TEM/STEM). Damit ist es möglich, Atome und Ionen abzubilden und mittels Elektronen-Spektroskopie Rückschlüsse auf die elektronischen Ladungen der einzelnen Ionen zuzulassen. Erst dadurch konnten die Wissenschaftler bisher lediglich berechnete Atom-, Ionen- und Schichtabstände wirklich nachmessen und bestätigen.

„Wie sich durch die Platzverteilung der Dotierungs-Elemente die elektrischen und optischen Eigenschaften des Zinkoxids verändern, können wir zurzeit noch nicht im Detail voraussagen. Aber wir können durch unsere Mikroskopiemethoden wirklich sehen, wo sich die einzelnen Ionen befinden und deren Auswirkungen auf das Zinkoxid-Gitter festmachen“, fasst der Mitarbeiter der Forschungsgruppe Innovative Elektronenmikroskopie die gewonnenen Erkenntnisse zusammen.

Für ihre Untersuchungen benutzten die Forscher am INM und der Uni-Bonn neben Eisen und Indium in Zinkoxid auch Dotierungen mit Zinn, Gallium und Antimon mit ähnlichen Ergebnissen. Zur Synthese der untersuchten Materialien wurden Eisen- oder Indiumoxid-Pulver in unterschiedlichen Verhältnissen mit Zinkoxid-Pulver gemischt und bei 1350°C gesintert. Dünne Präparate für die TEM/STEM Untersuchungen erhielten die Forscher mittels Schleifen, Polieren und über Ionen-Dünnung.

Originalpublikation: H. Schmid, E. Okunishi, W. Mader, „Defect structures in ZnO studied by high-resolution structural and spectroscopic imaging“, Ultramicroscopy 127 (2013) 76-84, DOI: 10.1016/j.ultramic.2012.07.014

Ansprechpartner:
Dr. Herbert Schmid
INM – Leibniz-Institut für Neue Materialien
Programmbereich Innovative Elektronenmikroskopie
Tel: 0681-9300-113
E-Mail:herbert.schmid@inm-gmbh.de

Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen? Dabei bestimmen vier Leitthemen die aktuellen Entwicklungen am INM: Neue Materialien für Energieanwendungen, Neue Konzepte für Implantatoberflächen, Neue Oberflächen für tribologische Anwendungen sowie Nanosicherheit. Die Forschung am INM gliedert sich in die drei Felder Chemische Nanotechnologie, Grenzflächenmaterialien und Materialien in der Biologie.

Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 190 Mitarbeiter.

Dr. Carola Jung | idw
Weitere Informationen:
http://www.inm-gmbh.de
http://www.leibniz-gemeinschaft.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

nachricht Ein Herz aus Spinnenseide
11.08.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten