Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Material der Zukunft: Durchbruch für Informationstechnologie auf Basis von Heusler-Materialien

10.06.2014

Physiker beobachten erstmals Material mit hundertprozentiger Spinpolarisation bei Raumtemperatur – Grundlage für extrem leistungsfähige Spintronik-Bauteile

Es ist ein Durchbruch, auf den Physiker und Chemiker weltweit lange gehofft hatten und der die Informationstechnologie in den nächsten Jahren maßgeblich beeinflussen dürfte: Wissenschaftlern der Johannes Gutenberg-Universität Mainz (JGU) ist es zum ersten Mal gelungen, die hundertprozentige Spinpolarisation einer Heusler-Verbindung direkt zu beobachten.


Prinzip-Darstellung der Spin-aufgelösten Photoemissionsspektroskopie an dünnen

Heusler-Schichten

Abb.: Martin Jourdan, JGU

Heusler-Materialien bestehen aus mehreren metallischen Elementen in einer Gitterstruktur. Sie zählen zu den Kandidaten für neue Werkstoffe, um noch kleinere Datenspeicher mit noch höheren Speicherdichten zu bauen. In den letzten Jahren waren allerdings Zweifel aufgekommen, ob Heusler-Materialien diese Erwartungen tatsächlich erfüllen würden.

Physiker der JGU konnten nun zeigen, dass sich für die Heusler-Verbindung Co2MnSi die erforderlichen elektronischen Eigenschaften nachweisen lassen. Die Studie wurde in Zusammenarbeit mit theoretischen Physikern und Chemikern der Ludwig-Maximilians-Universität München (LMU) und des Max-Planck-Instituts für Chemische Physik fester Stoffe (MPI-CPfS) in Dresden erstellt und in dem Online-Wissenschaftsjournal Nature Communications publiziert.

Die Beobachtungen legen den Grundstein für die künftige Entwicklung außerordentlich leistungsfähiger Bauteile in der Spintronik auf Basis von Heusler-Materialien. Anwendungen ergeben sich zum Beispiel für Festplatten-Leseköpfe oder für nichtflüchtige Speicherelemente.

Elektronen sind die Ladungsträger in Metallen und Halbleitern. Sie besitzen aber nicht nur eine Ladung, die für die konventionelle Elektronik entscheidend ist, sondern auch ein magnetisches Moment, den Spin, vorstellbar als eine Art Eigendrehung des Elektrons um die eigene Achse. Spinbasierte Elektronik, auch Spintronik genannt, wird allgemein als Informationstechnologie der Zukunft angesehen, für deren optimale Leistungsfähigkeit allerdings neuartige Materialien erforderlich sind.

Eine entscheidende Größe ist dabei die Spinpolarisation, das heißt der Grad der parallelen Ausrichtung der am Ladungstransport beteiligten Spins. Das Wunschmaterial sollte eine möglichst hohe Spinpolarisation aufweisen, also möglichst viele Elektronen sollen sich in die gleiche Richtung ausrichten.

Den Mainzer Physikern ist nun der erste direkte experimentelle Nachweis einer nahezu vollständigen Spinpolarisation bei Raumtemperatur für die intermetallische Heusler-Verbindung Co2MnSi gelungen. „Es wird schon lange über diese Materialklasse geforscht und es gibt viele theoretische Hinweise auf die elektronischen Eigenschaften der Heusler-Verbindungen, aber bisher konnte kein einziges Experiment eine hundertprozentige Spinpolarisation bei Raumtemperatur bestätigen“, erklärt PD Dr. Martin Jourdan von der JGU, Erstautor der Studie.

Für sehr tiefe Temperaturen von minus 269 Grad Celsius hatten sich entsprechende Hinweise schon erhärtet. Entscheidend für die spätere praktische Anwendung ist außerdem ein weiterer Befund, den die Wissenschaftler an der Verbindung Co2MnSi – bestehend aus Kobalt, Mangan und Silicium – nachgewiesen haben, nämlich dass die hohe Spinpolarisation an der Oberfläche des Materials auftritt.

Prof. Dr. Claudia Felser, die das Forschungsfeld der halbmetallischen Heusler-Materialien vor 15 Jahren etabliert hat, sieht diese Arbeit als einen lang erhofften Durchbruch an. „Endlich gelang der direkte experimentelle Nachweis der hundertprozentigen Spinpolarisation, ein wichtiger Meilenstein in Richtung neuer Spintronik-Devices“, so Felser, Direktorin am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden.

Der erfolgreiche Nachweis beruht auf einer außerordentlich präzisen Herstellung der Probe. Dazu muss in der Kristallstruktur der Heusler-Verbindung eine perfekte atomare Ordnung erreicht werden. Dieser besonders hohe Ordnungsgrad genau an der Oberfläche des Materials wird in Mainz mithilfe der Dünnschichtpräparation in einer Ultrahochvakuumkammer erzeugt. Die Spinpolarisation wird dann mit Photoelektronenspektroskopie gemessen und konnte in Zusammenarbeit mit Theoretikern der LMU und des MPI-CPfS durch eine besondere Kombination von Volumen und Oberflächeneigenschaften der Verbindung erklärt werden.

„Dies ist nicht nur ein Durchbruch bei der Suche nach neuen Materialien für die Spintronik, sondern auch im Hinblick auf die Kooperation zwischen Theorie und Experiment“, so Jourdan. „Wir konnten zeigen, dass perfekt hergestellte Materialien auch tatsächlich die Eigenschaften besitzen, die theoretisch vorhergesagt werden.“ Heusler-Materialien werden weltweit, insbesondere aber in Japan, Deutschland und den USA beforscht. An der Johannes Gutenberg-Universität bilden sie einen Forschungsschwerpunkt im Rahmen der materialwissenschaftlichen Verbünde MAINZ (Exzellenz-Graduiertenschule Materials Science in Mainz) und CINEMA (Center for Innovative and Emerging Materials).

Bei der aktuellen Studie steuerten die LMU-Physikochemiker PD Dr. Jan Minar, apl. Prof. Dr. Jürgen Braun und Prof. Dr. Hubert Ebert das theoretische Rüstzeug bei: „Die spektroskopischen Berechnungen wurden im Rahmen des sogenannten Einstufenmodells durchgeführt“, sagt Minar aus der Gruppe von Prof. Ebert, in der das zugrundeliegende Programm entwickelt wurde. „Eine derartige Kombination aus elektronischer Strukturrechnung und theoretischer Photoemission erlaubt einen direkten Vergleich mit den entsprechenden experimentellen Daten, was wiederum wesentlich zum Verständnis der gemessenen hundertprozentigen Spinpolarisation beiträgt.“

Veröffentlichung:
Martin Jourdan et al.
Direct observation of half-metallicity in the Heusler compound Co2MnSi
Nature Communications, 30. Mai 2014
DOI: 10.1038/ncomms4974

Weitere Informationen:
PD Dr. Martin Jourdan
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-23635
Fax +49 6131 39-24076
E-Mail: jourdan@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/505.php

Weitere Links:
http://www.klaeui-lab.physik.uni-mainz.de/
http://www.nature.com/ncomms/2014/140530/ncomms4974/full/ncomms4974.html
http://www.cup.uni-muenchen.de/dept/ch/pc/ebert.php
http://www.cpfs.mpg.de/inorganic_chemistry

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten