Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Maßgeschneiderte Spitzen für Rasterkraftmikroskope

09.08.2016

Rasterkraftmikroskope machen die Nanostruktur von Oberflächen sichtbar. Ihre Sonden tasten das Untersuchungsmaterial dazu mit feinsten Messnadeln ab. Am KIT ist es nun gelungen, den Messnadeln eine maßgeschneiderte Form zu geben. So kann eine passende Messspitze für jede Messaufgabe hergestellt werden, etwa für verschiedenartige biologische Proben. Möglich macht dies die 3D-Laserlithografie, also ein 3D-Drucker für Strukturen in Nanometer-Größe. Die Fachpublikation Applied Physics Letters widmet diesem Erfolg nun ihre Titelseite. DOI: 10.1063/1.4960386

Mit Hilfe der Rasterkraftmikroskopie ist es möglich, Oberflächen bis in die atomare Ebene hinein zu analysieren. Die bislang dafür gebräuchlichen, in Standardgrößen erhältlichen Spitzen eignen sich jedoch nicht für jeden Einsatz.


Optimal an spezielle Anforderungen angepasste Sondenspitzen für Rasterkraftmikroskope können nun am KIT mittels Nano-3D-Druck hergestellt werden.

Bilder: KIT


Optimal an spezielle Anforderungen angepasste Sondenspitzen für Rasterkraftmikroskope können nun am KIT mittels Nano-3D-Druck hergestellt werden.

Bilder: KIT

Manch ein Untersuchungsobjekt erfordert eine speziell gestaltete Form oder eine besonders lange Spitze, mit der sich starke Vertiefungen im Material abtasten lassen. Wissenschaftler am KIT zeigen jetzt, wie es möglich ist, optimal an spezielle Anforderungen angepasste Sondenspitzen einfach herzustellen.

„Biologische Oberflächen, zum Beispiel die Blütenblätter von Tulpen oder Rosen, haben häufig Strukturen, die sehr tief sind und hohe Hügelchen aufweisen“, sagt Privatdozent Hendrik Hölscher, der am Institut für Mikrostrukturtechnik des KIT die Arbeitsgruppe Rastersonden-Technologien leitet.

Die auf dem Markt erhältlichen Spitzen seien typischerweise 15 Mikrometer - 15 Tausendstel Millimeter - hoch, pyramidenförmig und relativ breit, so der Physiker. Anders geformte Spitzen sind zwar zu kaufen, jedoch aufwendig in Handarbeit hergestellt und teuer.

Mit Hilfe der 3D-Laserlithografie ist es den Karlsruher Forschern nun gelungen, maßgeschneiderte Spitzen in beliebiger Gestalt zu formen, die einen Radius von nur 25 Nanometer - 25 Millionstel Millimeter - haben. Das Verfahren, mit dem sich jede gewünschte Form mit dem Computer gestalten und anschließend im 3D-Druck herstellen lässt, ist im makroskopischen Bereich bereits einige Zeit bekannt, auf der Nanoskala ist dieser Ansatz anspruchsvoll.

Um die jeweils gewünschten dreidimensionalen Strukturen zu erhalten, nutzen die Forscher das am KIT entwickelte und von dem Unternehmen Nanoscribe - einer Ausgründung des KIT - vermarktete Verfahren der 3D-Lithografie. Sie basiert auf der Zwei-Photonen-Polymerisation: Stark fokussierte Laserimpulse lassen lichtempfindliche Materialien in den gewünschten Strukturen aushärten, die anschließend aus dem umliegenden, nicht belichteten Material herausgelöst werden. „Die Methode bietet den Vorteil, dass sich für jede Probe, die man untersuchen möchte, die perfekte Spitze herstellen lässt“, erläutert Hölscher.

Über den Nutzen des Verfahrens für die Verbesserung der Rasterkraftmikroskopie berichten die Forscher unter dem Titel „Tailored probes for atomic force microscopy fabricated by two-photon polymerization“ in der Fachzeitschrift Applied Physics Letters. Die in beliebiger Form herstellbaren Spitzen lassen sich auf herkömmliche handelsübliche Messnadeln aufsetzen und zeigen einen geringen Verschleiß. Sie eignen sich hervorragend für die Untersuchung von biologischen Proben, aber auch von technischen und optischen Komponenten auf der Nanoebene.

Gefördert wurde die Forschung durch die Deutsche Forschungsgemeinschaft, durch ein ERC Starting Grant und ein Senior Grant des Europäischen Forschungsrates, durch Mittel der Alfried Krupp von Bohlen und Halbach Stiftung sowie - innerhalb des Verbundprojekts PHOIBOS - durch das Bundesministerium für Bildung und Forschung, außerdem wurde sie unterstützt durch die Hochtechnologieplattform „Karlsruhe Nano-Micro-Facility“ (KNMF) am KIT.

Gerald Göring, Philipp-Immanuel Dietrich, Matthias Blaicher, Swati Sharma, Jan G. Korvink, Thomas Schimmel, Christian Koos, and Hendrik Hölscher: Tailored probes for atomic force microscopy fabricated by two-photon polymerization. Applied Physics Letters. DOI: 10.1063/1.4960386
http://scitation.aip.org/content/aip/journal/apl/109/6/10.1063/1.4960386

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

http://scitation.aip.org/content/aip/journal/apl/109/6/10.1063/1.4960386

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie