Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mal Schicht, mal nicht

22.01.2013
Wann sich eine Flüssigkeit auf einer rauen Oberfläche als dünner Film abscheidet und wann sie Tropfen bildet, lässt sich auf einfache Weise erklären

Flüssigkeitsfilme und -tröpfchen, die eine raue Oberfläche überziehen, sind ein Alltagsphänomen: Allmorgendlich verwandeln etwa Tautropfen Blätter und Gräser in magische Schönheiten, während ein Film aus Regenwasser auf dem Straßenasphalt (spätestens wenn er gefriert) jedem Autofahrer gefährlich werden kann. Doch wie lässt sich verstehen, unter welchen Bedingungen durchgängige Flüssigkeitsschichten oder nur vereinzelte Tropfen entstehen?


Beim Lotus-Effekt füllt eine dünne Schicht aus Luft die mikroskopische Rauigkeit der Oberfläche aus. Wasser kann dadurch nicht eindringen und perlt ab. © Foto: Jutta Wolf (Ulm)

Bisherige Theorien dazu beschrieben vor allem ideal glatte – und somit unrealistische - Oberflächen. Wissenschaftler am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen haben nun erstmals eine allgemeine Theorie entwickelt, die auf die Frage nach Film oder Tröpfchen auch für raue Oberflächen eine Antwort liefert. Diese kommt mit verblüffend einfachen mathematischen Ausdrücken aus – und könnte etwa vorhersagen, wann es in Umspannwerken zu Kurzschlüssen kommt.

Größere Mengen an Flüssigkeiten sind ausgesprochen wandelbar: Mühelos füllen sie jedes Gefäß, passen ihre äußere Form jeder Oberfläche oder Begrenzung an. Mikroskopisch dünne Flüssigkeitsfilme hingegen sind anders. Sie müssen vermitteln zwischen der rauen Oberfläche des Gegenstandes und der freien Flüssigkeitsoberfläche, die wegen der Oberflächenspannung möglichst glatt sein möchte. Bei dieser Gratwanderung kann es etwa energetisch günstiger sein, dass sich auf einer Oberfläche statt eines Films winzige Tröpfchen bilden – wie beim morgendlichen Tau, der Blätter, Spinnennetze und Windschutzscheiben überzieht.

Forschern des Max-Planck-Instituts für Dynamik und Selbstorganisation in Göttingen ist es nun erstmals gelungen, eine allgemeine Theorie für dieses Verhalten aufzustellen, die für die große Mehrheit natürlicher Oberflächen gilt. „Bisher haben sich Physiker bei dieser Frage in erster Linie auf sehr spezielle Oberflächen konzentriert, etwa solche mit regelmäßigen, mikroskopischen Ritzen und Rillen“, erklärt Stephan Herminghaus, Direktor am Göttinger Max-Planck-Institut. Diese lassen sich etwa mit Methoden der Lithographie herstellen und erlauben eine vergleichsweise einfache mathematische Beschreibung.

Dampfdruck und Benetzungswinkel entscheiden über das Verhalten der Flüssigkeit

„Mit den allermeisten Oberflächen aus unserer Alltagswelt – von der Hauswand bis zur Tischplatte – haben sie jedoch nichts zu tun“, gibt der Physiker zu bedenken. Solche „Alltagsoberflächen“ zeichnen sich durch eine unregelmäßige Verteilung mikroskopischer Hügel und Täler aus, deren Größe und Form statistischen Schwankungen unterliegt. „In der Regel haben die Strukturen Abmessungen von vielen Nano- bis zu einigen Mikrometern“, so Herminghaus.

In ihren Rechnungen beschreiben die Göttinger Forscher diese Rauigkeit als statistische Höhenverteilung: Die Berge und Täler treten ungeordnet und ohne Muster auf. Einzige Voraussetzungen sind, dass die Höhen auf der gesamten Oberfläche ähnlich sind und nicht zu stark schwanken. „Dadurch ergeben sich verblüffend einfache Ausdrücke, deren Verständnis kaum mehr als Schulmathematik voraussetzt“, erklärt Herminghaus. In seinem Forschungsfeld, in dem sonst fast ausschließlich komplexe Computersimulationen schwer handhabbarer Gleichungen zum Ziel führen, ist dies eine kleine Sensation.

Die neuen Gleichungen offenbaren, dass das Verhalten von Flüssigkeiten auf einfache Weise von zwei Größen abhängt: dem Benetzungswinkel, der angibt, mit welcher Neigung die Flüssigkeitsoberfläche auf den Untergrund trifft, und dem Dampfdruck in der umgebenden Luft (das heißt der Luftfeuchtigkeit). „Bei ideal glatten Oberflächen spielt der Dampfdruck keine so große Rolle“, erklärt Herminghaus. Dort muss sich die Flüssigkeit nicht in an so viele Randbedingungen, wie sie etwa von mikroskopischen Mulden und Tälern vorgegeben werden, anpassen. Bei rauen Oberflächen hingegen ist der Einfluss beträchtlich: Erhöhen sich Druck oder Winkel nur leicht, kann es geschehen, dass sich ein Flüssigkeitsfilm schlagartig in viele einzelne Tröpfchen verwandelt – oder umgekehrt.

Bei zu hohem Wasserdruck geht der Lotuseffekt verloren

Physiker sprechen in solchen Fällen von einem Übergang zwischen zwei Phasen. In der so genannten nassen Phase bildet die Flüssigkeit einen nahezu durchgängigen Film auf der rauen Oberfläche. Fast alle mikroskopischen Täler sind gefüllt, nur vereinzelt durchbricht ein besonders hoher Hügel die Wasseroberfläche. In der trockenen Phase hingegen bleiben weite Teile der Oberfläche unbenetzt. Stattdessen klumpt die Flüssigkeit zu Tropfen zusammen. „Das System wählt immer die Lösung, die je nach Dampfdruck und Benetzungswinkel am wenigsten Energie erfordert“, so Herminghaus.

Mit diesen neuen Erkenntnissen können die Wissenschaftler nun prinzipiell berechnen, welche Luftfeuchtigkeit erreicht sein muss, damit eine Oberfläche durchgängig nass wird. Für eine Prognose ist es dann lediglich notwendig, die statistischen Eigenschaften der Oberflächenrauigkeit zu kennen. Interessant könnten solche Überlegungen etwa für die Betreiber von Umspannwerken sein. Überzieht dort ein geschlossener Flüssigkeitsfilm die Isolatoren, kann es zu Kurzschlüssen kommen. „Sobald sie durch Verwitterung rau werden, erfüllen die Keramiken, die dort eingesetzt werden, in etwa unsere Voraussetzungen“, so Herminghaus. Zum Vorhersagen feuchter Kellerwände seien die neuen Ergebnisse hingegen noch nicht geeignet. Manche Materialien sind dafür zu uneinheitlich: Ziegelsteine etwa sind zu grobporig und zu stark strukturiert. Für diese Stoffe müsste die Theorie erst noch erweitert werden.

Auch für den Lotus-Effekt, bei dem Flüssigkeitstropfen elegant von rauen Oberflächen abperlen, spielen die neuen Erkenntnisse eine Rolle. Dort spielt allerdings ein dünner Luftfilm die Rolle der Flüssigkeit und das Wasser übernimmt den Part der Luft. Füllt ein solcher Film die Täler der Oberfläche aus, können Wassertropfen nicht eindringen. Sie schweben auf einer Art mikroskopischem Luftkissen und perlen ab. Erst wenn diese durchgängige Luftschicht zusammenbricht, weil der Druck des Wassers zu groß wird, kann die Feuchtigkeit in die Vertiefungen eindringen und die Blattoberfläche benetzen.

Ansprechpartner

Prof. Dr. Stephan Herminghaus,
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 5176-200
Fax: +49 551 5176-202
E-Mail: stephan.herminghaus@­ds.mpg.de

Dr. Birgit Krummheuer,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 5176-668
E-Mail: birgit.krummheuer@­ds.mpg.de

Originalpublikation
Stephan Herminghaus
Universal Phase Diagram for Wetting on Mesoscale Roughness
Physical Review Letters, 109, 236102 (5. Dezember 2012)

Prof. Dr. Stephan Herminghaus | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/6855351/benetzung_raue_oberflaeche

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forschernachwuchsgruppe am IfBB startet in die zweite Projektphase
28.08.2015 | Hochschule Hannover

nachricht Natriumionenakkumulatoren für intelligente Netze?
28.08.2015 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: Optische Schalter - Lernen mit Licht

Einem deutsch-französischen Team ist es gelungen, einen lichtempfindlichen Schalter für Nervenzellen zu entwickeln. Dies ermöglicht neue Einblicke in die Funktionsweise von Gedächtnis und Lernen, aber auch in die Entstehung von Krankheiten.

Lernen ist nur möglich, weil die Verknüpfungen zwischen den Nervenzellen im Gehirn fortwährend umgebaut werden: Je häufiger bestimmte Reizübertragungswege...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Membranprotein in Bern erstmals entschlüsselt

Dreidimensionale (3D) Atommodelle von Proteinen sind wichtig, um deren Funktion zu verstehen. Dies ermöglicht unter anderem die Entwicklung neuer Therapieansätze für Krankheiten. Berner Strukturbiologen ist es nun gelungen, die Struktur eines wichtigen Membranproteins zu entschlüsseln – dies gelingt relativ selten und ist eine Premiere in Bern.

Membranproteine befinden sich in den Wänden der Zellen, den Zellmembranen, und nehmen im menschlichen Körper lebenswichtige Funktionen wahr. Zu ihnen gehören...

Im Focus: Quantenbeugung an einem Hauch von Nichts

Die Quantenphysik besagt, dass sich auch massive Objekte wie Wellen verhalten und scheinbar an vielen Orten zugleich sein können. Dieses Phänomen kann nachgewiesen werden, indem man diese Materiewellen an einem Gitter beugt. Eine europäische Kollaboration hat nun erstmals die Delokalisation von massiven Molekülen an einem Gitter nachgewiesen, das nur noch eine einzige Atomlage dick ist. Dieses Experiment lotete die technischen Grenzen der Materiewellentechnologie aus und knüpft dabei an ein Gedankenexperiment von Bohr und Einstein an. Die Ergebnisse werden aktuell im Journal "Nature Nanotechnology" veröffentlicht.

Die quantenmechanische Wellennatur der Materie ist die Grundlage für viele moderne Technologien, wie z. B. die höchstauflösende Elektronenmikroskopie, die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gravitationswellen im Einsteinjahr

28.08.2015 | Veranstaltungen

Strömungen in industriellen Anlagen sichtbar gemacht

28.08.2015 | Veranstaltungen

Konzepte gegen Fachkräftemangel: Demografiekonferenz in Halle

27.08.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Siemens an der Sicherheit: Lösungen für jede Anforderung

28.08.2015 | Messenachrichten

Biofabrikation von künstlichen Blutgefäßen mit Laserlicht

28.08.2015 | Biowissenschaften Chemie

Forscher entwickeln Methode zur Manipulation von Molekülen

28.08.2015 | Physik Astronomie