Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mainz und Kaiserslautern liefern Spitzentechnologie für die Wirtschaft

06.02.2013
Zwei gemeinsame neue Großforschungsprojekte für Materialwissenschaft und Spintronik an den Universitäten Mainz und Kaiserslautern mit Umsetzungspotenzial

An der Johannes Gutenberg-Universität Mainz (JGU) und der Technischen Universität Kaiserslautern sind zwei Großforschungsprojekte zur Materialwissenschaft und Spintronik gestartet.


Industriell gefertigter Wafer mit Speichereinheiten aus den gemeinsamen Forschungsarbeiten der Universitäten Mainz und Kaiserslautern
Foto/Quelle: Andrés Conca Parra

Die beiden Projekte haben ein Finanzvolumen von mehr als 3,8 Mio. Euro und werden im Programm „Wachstum durch Innovation“ mit insgesamt rund 2,37 Mio. Euro durch Fördermittel des Europäischen Fonds für regionale Entwicklung (EFRE) und der Ressorts für Wissenschaft und Wirtschaft des Landes unterstützt. Sie fördern die schnelle Umsetzung von universitären Forschungsergebnissen in die industrielle Produktion. Oft dauert es Jahre, bis Ideen und Produkte aus der universitären Grundlagenforschung ihren Weg in industrielle Anwendungen finden.

Durch die beiden neuen Projekte STeP und TT-DINEMA wird eine deutlich schnellere Umsetzung in marktfähige Verfahren und Produkte ermöglicht. „Mit diesen beiden Projekten unterstützen wir nicht nur unsere Hochschulen, sich in Materialwissenschaft und Spintronik auch zukünftig an der internationalen Spitze zu positionieren, sondern leisten auch einen sehr wertvollen Beitrag, um den rheinland-pfälzischen Unternehmen in diesen Hightech-Bereichen einen schnellen und direkten Zugang zu innovationsrelevantem Know-how zu ermöglichen“, so Wissenschaftsministerin Doris Ahnen.

„Das Projekt STeP stellt einen wichtigen Baustein einer effizienten Vorlaufforschung des Innovationsnetzwerkes ,Magnetische Mikrosysteme InnoMag e.V.‘ dar“, betonte Wirtschaftsministerin Eveline Lemke. Das Netzwerk mit Sitz in Mainz verfolge dabei das Ziel, innovative magnetische Mikrosysteme für neue Anwendungen in den Bereichen Automotive, Automation, Bioanalytik und Sicherheitstechnik mit hohem wirtschaftlichem Potenzial zu erschließen. So werden diese z.B. im Bereich der Automation wegen ihrer hohen Auflösung, hohen Zuverlässigkeit und Robustheit u.a. in Montage- und Werkzeugmaschinen sowie in Industrieroboter eingesetzt.

Die Spintronik-Technologieplattform in Rheinland-Pfalz (STeP) zielt auf den nachhaltigen Aufbau technischer Kompetenzen sowie die Unterstützung regionaler Unternehmen auf dem Gebiet der Spintronik. Die Plattform ist speziell ausgelegt für die Erforschung und Entwicklung magnetischer Schichtsysteme, die sich z.B. für die Anwendung in Sensoren und Speichereinheiten eignen. SteP stellt sogenannte Heusler-Materialien in den Mittelpunkt der Forschung. Es geht darum, „Baukastensysteme“ mit neuartigen Schichtsystemen zu entwickeln, die dann flexibel an verschiedenste funktionelle und technologische Anforderungen angepasst werden können. In einem neuartigen Ansatz wird die universitär geprägte Forschung unmittelbar in einer industriellen Produktionslinie, die nach DIN-Normen spezifiziert ist, umgesetzt. Dies ist eine wichtige Voraussetzung für die spätere direkte Übertragung der Forschungsergebnisse in konventionelle Produktionsverfahren der Halbleiterindustrie. Die Forscher konnten als Kooperationspartner die Firma Sensitec GmbH (Mainz) gewinnen, die zuletzt durch die Ausstattung des Mars-Rovers Curiosity mit moderner Sensortechnologie von sich Reden gemacht hat.

Das Projekt TT-DINEMA (Technologietransfer-Dienstleistungszentrum für Neue Materialien) beschäftigt sich mit dem Aufbau eines international konkurrenzfähigen und unabhängigen Dienstleistungszentrums zur Bereitstellung neuer Materialkonzepte. Es stellt die Basis für innovative Entwicklungsprojekte auf verschiedenen Anwendungsfeldern dar, die von der Solartechnologie über die Medizintechnik bis hin zur Thermoelektrik reichen und insbesondere durch kleine und mittelständische Unternehmen genutzt werden können. Bei den verwendeten Materialien stehen auch hier Heusler-Verbindungen im Mittelpunkt. Diese vergleichsweise einfachen chemischen Verbindungen verknüpfen idealerweise eine unkomplizierte Herstellung mit einer großen Vielfalt an physikalischen Eigenschaften. Dies macht sie für verschiedene Anwendungen wie Solarzellen, Halbleiterbauteile und als Thermoelektrika zur Stromgewinnung aus Abwärme interessant. Neben ihrer großen Anwendungsvielfalt sind diese Materialien aus industrieller Sicht auch aufgrund ihrer geringen Kosten, ihrer Nachhaltigkeit, Umweltverträglichkeit und der leichten Prozessierbarkeit interessant.

Im Zentrum des Forschungsprojektes TT-DINEMA steht die Anschaffung von zwei hochkomplexen Geräten auf dem neusten Stand der Technik: eine Beschichtungsanlage auf Industrieniveau, Sputterdepositionsanlage genannt, und eine Anlage zur Herstellung der Ausgangsmaterialien. Die anspruchsvolle Infrastruktur und Prozesstechnologie, die zur Bereitstellung von Dienstleistungen für Forschung und Entwicklung nötig ist, wird von den Universitäten Mainz und Kaiserslautern bereitgestellt.

Die beiden Projekte sind assoziiert mit der Exzellenz-Graduiertenschule „Materials Science IN MainZ“ (MAINZ) und dem Landesforschungszentrum OPTIMAS.

Ansprechpartner:
Dr. Frederick Casper
Prof. Dr. Claudia Felser
moment Gruppe
Institut für anorganische Chemie und analytische Chemie
Johannes Gutenberg-Universität Mainz
Tel. +49 6131 39-24403
E-Mail: casperf@uni-mainz.de
http://www.superconductivity.de
Prof. Dr. Mathias Kläui
Prof. Dr. Gerhard Jakob
Arbeitsgruppe Physik der Kondensierten Materie (KOMET)
Institut für Physik
Johannes Gutenberg-Universität Mainz
Tel. +49 6131 39-24345
Fax +49 6131 39-24076
E-Mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de
Dr. Britta Leven
Fachbereich Physik, AG Magnetismus
Technische Universität Kaiserslautern
Tel. +49 631 205-4037
Fax +49 631 205-4095
E-Mail: leven@physik.uni-kl.de
http://www.physik.uni-kl.de/hillebrands
Prof. Dr. Burkard Hillebrands
Fachbereich Physik, AG Magnetismus
Technische Universität Kaiserslautern
Tel. +49 631 205-4037
Fax +49 631 205-4095
E-Mail: hilleb@physik.uni-kl.de
http://www.physik.uni-kl.de/hillebrands
-- Gemeinsame Pressemitteilung der Johannes Gutenberg-Universität Mainz und der Technischen Universität Kaiserslautern --

Petra Giegerich | idw
Weitere Informationen:
http://www.superconductivity.de/
http://www.klaeui-lab.physik.uni-mainz.de/
http://www.physik.uni-kl.de/hillebrands/home/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics