Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MAI Polymer: Optimierung thermoplastischer Matrix/Schlichte-Systeme

04.09.2013
Ein neues Verbundprojekt des Spitzenclusters MAI Carbon unter Leitung des Lehrstuhls für Experimentalphysik II der Universität Augsburg

Die Verbesserung der mechanischen Eigenschaften und der Stabilität von thermoplastischen CFK-Werkstoffen für anwendungsoptimierte Leichtbaumaterialien durch eine maßgeschneiderte Anpassung der Anbindung zwischen Carbonfaser und Matrix - das ist das Ziel von MAI Polymer. Geleitet wird dieses kürzlich im Rahmen des Spitzenclusters MAI Carbon offiziell gestartete Projekt von Prof. Dr. Siegfried Horn am Lehrstuhl für Experimentalphysik II der Universität Augsburg.


Untersuchung der Anhaftung von Faser und Matrix durch Einzelfaser-Push-Out-Versuch
Copyright: Universität Augsburg, Lehrstuhl für Experimentalphysik II

Projektpartner Horns und seiner Arbeitsgruppe Faser-Matrix-Wechselwirkung sind BASF, EADS-IW, Fraunhofer ICT-FIL und SGL Carbon. Audi, BMW, Eurocopter sowie Voith kommen als assoziierte Partner hinzu. Über eine auf zweieinhalb Jahre veranschlagte Projektlaufzeit hinweg stehen dem Verbund rund 2,3 Mio. Euro zur Verfügung, um an einer maßgeschneiderten Einstellung der Faser-Matrix-Anbindung zu arbeiten, die die mechanischen Eigenschaften des CFK-Werkstoffes optimiert und ihm hohe Temperatur- und Medienstabilität verleiht.

Optimale Abstimmung von Faser, Schlichte und Matrix

Die Anbindung der Carbonfaser an die Matrix - an das Material also, in das sie eingebettet ist – über eine geeignete Schlichte ist entscheidend für die mechanischen Eigenschaften sowie für die chemische und thermische Beständigkeit eines Faserverbundes. In der ersten Projektphase von MAI Polymer sollen dementsprechend eingehende Untersuchungen der Wechselwirkungen zwischen Faser und Matrix die Grundlage liefern, auf der sich Faser, Schlichte und thermoplastische Matrix dann für spezifische Anwendungsgebiete optimal aufeinander abstimmen lassen. "Unser Anspruch ist es", so Horn, "eine verbesserte mechanische Performance der thermoplastischen Verbundwerkstoffe und eine höhere Stabilität gegenüber Umwelteinflüssen zu erreichen. Letztlich geht es uns darum, durch die Modifikation des Faser-Matrix-Grenzbereichs die Faser gezielt aus der Matrix herauslösen zu können, um so die Basis für neue, effiziente Recyclingverfahren zu schaffen."

Thermoplastische Matrix/Schlichte-Systeme für höhere Energieeffizienz

Der Einsatz von Leichtbaumaterialien wie von carbonfaserverstärkten Kunststoffen ermöglicht z. B. im Automobilbau eine Gewichtseinsparung von bis zu 60 Prozent gegenüber der konventionellen Stahlbauweise. Dementsprechend hoch sind die Potenziale dieser Materialien mit Blick auf eine Reduktion des Treibstoffverbrauchs und eine erhebliche Steigerung der Energieeffizienz im Bereich Mobilität. Für die Automobilindustrie stehen hier insbesondere thermoplastische Matrixpolymere im Mittelpunkt des Interesses. "Da sie mehrmals aufgeschmolzen sowie einfach umgeformt werden können und weil sich dabei die für die Anwendungen geforderten Gebrauchseigenschaften erzielen lassen, bringen thermoplastische Matrixpolymere die Voraussetzungen für die erforderlichen kurzen Taktzeiten bei der Produktion mit", erläutert Horn. Vor diesem Hintergrund richte auch das Projekt MAI Polymer sein Augenmerk speziell auf diese Materialien.

Bewertungsstandards für thermoplastische Verbundwerkstoffe

Die Materialparameter und die Kenngrößen der thermoplastischen Verbundwerkstoffe, die aus den MAI Polymer-Forschungsarbeiten resultieren, sollen in einer Datenbank zusammengefasst werden und eine umfangreiche Datenbasis liefern für die Entwicklung von Bewertungsstandards für thermoplastische Verbundwerkstoffe. Diese wiederum sollen bei der Beratung von Unternehmen hinsichtlich der Auswahl von anwendungsspezifischen thermoplastischen Systemen zum Einsatz kommen.

Zum Spitzencluster MAI Carbon

Von selbst versteht sich der enge Austausch zwischen MAI Polymer und den anderen Projekten von MAI Carbon. An dieser Spitzenclusterinitiative des Carbon Composites e. V. (CCeV) beteiligen sich neben Bildungs- und Forschungseinrichtungen sowie unterstützenden Organisationen namhafte Unternehmen aus der Region München-Augsburg-Ingolstadt, darunter Audi, BMW, Premium AEROTEC, Eurocopter, Voith und die SGL Group. Alle beteiligten Partner agieren auf dem Technologiefeld Hochleistungs-Faserverbundwerkstoffe und hier insbesondere auf dem Gebiet der carbonfaserverstärkten Kunststoffe (CFK). Der Schwerpunkt liegt auf den Anwenderbranchen Automobilbau, Luft- und Raumfahrt sowie dem Maschinen- und Anlagenbau. Hauptanliegen von MAI Carbon ist es, den Werkstoff Carbon für die Serienreife fit zu machen sowie die Region München-Augsburg-Ingolstadt als ein europäisches Kompetenzzentrum für CFK-Leichtbau auszubauen. MAI Carbon und seine Teilprojekte werden finanziell gefördert vom Bundesministerium für Bildung und Forschung (BMBF), vom Bayerischen Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie sowie von den Industriepartnern.

Ansprechpartner:
Prof. Dr. Siegfried Horn
Institut für Physik
Lehrstuhl für Experimentalphysik II
Universität Augsburg
Universitätsstraße 1
86159 Augsburg
Telefon: +49(0)821-598-3438
Pressekontakt MAI Carbon:
Rita Fritsch
MAI Carbon Geschäftsstelle
Maximilianstr. 3
86150 Augsburg
Telefon: +49(0)821-324-1597
rita.fritsch@mai-carbon.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.mai-carbon.de
http://www.physik.uni-augsburg.de/exp2/forschung/Faserverbundwerkstoffe/Faser-Matrix_WW/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kleine Strukturen – große Wirkung
21.11.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Transparente Beschichtung für Alltagsanwendungen
20.11.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie