Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetsensoren nach Maß

13.09.2016

DESY-Forscher haben die Grundlage für eine neue Generation von Magnetosensoren entdeckt. Die Entwicklung der Wissenschaftler ermöglicht es, die bei der herkömmlichen Produktionsweise limitierten Funktionen stark zu erweitern und somit den Sensor individuell für eine Vielzahl von neuen Anwendungen maßschneidern zu können. Das dazu verwendete Herstellungsverfahren stellen die Forscher im Wissenschaftsjournal „Advanced Functional Materials“ vor.

Magnetosensoren – oder genauer Magnetowiderstandssensoren – sind winzige, hochempfindliche und leistungsstarke Begleiter unseres täglichen Lebens.


Blick in die Vakuumanlage zur Herstellung der Sensorschichtsysteme. Das Schichtsubstrat befindet sich auf einer Drehhalterung, der Beschichtungsprozess wird durch ein lilafarbenes Plasma sichtbar.

Bild: Kai Schlage/DESY

Sie messen im Auto die Rotationsgeschwindigkeit der Räder für das Bremssystem ABS und die elektronische Stabilitätskontrolle ESP, stecken in jedem Handy, lesen Daten in Festplatten und dienen der Sicherheit durch das Aufspüren von Mikrorissen in Metallbauteilen. Diese Vielfalt an Einsatzgebieten erfordert jeweils eine entsprechend individuelle Funktion.

Die Sensoren bestehen aus mikrostrukturierten Stapeln von abwechselnd magnetischen und nichtmagnetischen Schichten, die jeweils nur wenige Nanometer dünn sind. Unter dem Einfluss eines äußeren Magnetfeldes ändert sich der elektrische Widerstand dieser Schichtstapel.

Obwohl der Riesenmagnetowiderstandseffekt (giant magneto-resistance, GMR), für dessen Entdeckung Albert Fert und Peter Grünberg im Jahr 2007 den Nobelpreis für Physik erhielten, die Sensorik revolutioniert hat, bleibt ein Problem: Die Magnetfeldstärke, bei der der Widerstand schaltet, ist im Wesentlichen vorgegeben.

DESY-Forscher haben nun ein Herstellungsverfahren entwickelt, das es erstmalig ermöglicht, gezielt Kontrolle über die Magnetowiderstandseigenschaften in den Sensorschichtsystemen zu erlangen. Mit diesem Verfahren kann in jeder magnetischen Einzelschicht der winzigen Schichtstapel die Feldstärke des Schaltens flexibel und präzise eingestellt werden.

Darüber hinaus können magnetische Vorzugsrichtungen von einzelnen Schichten beliebig zueinander orientiert werden. Somit kann auf einfache Weise eine Fülle von neuen Sensoreigenschaften realisiert werden.

„Bisher war es häufig so, dass die Anwendung auf den Sensor angepasst werden musste, mit unserer Technik können wir den Sensor für die gewünschte Anwendung maßschneidern“, erklärt DESY-Forscher Dr. Kai Schlage, der Erstautor der Studie.

Grundlage der verbesserten Sensortechnologie ist die Beschichtung im schrägen Einfall (engl. Oblique Incidence Deposition, OID). Das für Einzelschichten bereits bekannte OID-Verfahren erlaubt es, beliebige magnetische Materialien auf beliebigen Substraten magnetisch in Form zu bringen.

So kann man über die präzise Variation des Beschichtungswinkels in einfacher Weise entscheiden, ob eine magnetische Schicht bei einem äußeren Magnetfeld von 0,5 Millitesla oder erst bei der hundertfachen Magnetfeldstärke schalten soll. Zum Vergleich: Dies entspricht in etwa dem Unterschied zwischen dem 10- bzw. 1000-fachen des Erdmagnetfelds.

Die DESY-Forscher haben herausgefunden, dass dieses Verfahren nicht nur bei Einzelschichten, sondern auch in ausgezeichneter Weise bei einer großen Anzahl von Vielschichtsystemen zur Anwendung kommen kann und damit die Möglichkeiten des konventionellen Designs und der Funktion magnetischer Schichtstapel deutlich erweitert.

Die Herstellung ihrer Vielschichtsysteme führten die Forscher in hierfür eigens entwickelten Vakuumanlagen durch. Mit Hilfe von Experimenten an der Messstation P01 von DESYs Röntgenlichtquelle PETRA III konnten die Physiker die magnetischen Eigenschaften jeder Einzelschicht in solchen Schichtstapeln exakt vermessen und so nachweisen, dass mittels OID-Beschichtung beliebig komplexe und vor allem neue Magnetisierungsstrukturen mit höchster Genauigkeit in ausgedehnte Schichtstapel eingeprägt werden können.

Für die Magnetosensoren bedeutet dies, dass in mikrostrukturierten Schichtstapeln mit identischer Materialkombination und Dicke unterschiedlichste und vor allem auch neue Sensorcharakteristiken in einfacher Weise realisiert werden können.

„Das von uns entwickelte Verfahren erlaubt es, magnetische Sensoren herzustellen, deren Signale wesentlich präziser sind, mehr Informationen enthalten und sich zudem wesentlich leichter verarbeiten lassen als die Signale von herkömmlichen Sensoren“, erklärt der Leiter der Arbeitsgruppe, Prof. Ralf Röhlsberger. „Damit lassen sich beispielsweise Rotationsbewegungen erheblich genauer überwachen als dies bisher möglich war, wodurch die Sicherheit von Motoren, Antriebsaggregaten und Triebwerksteuerungen, insbesondere unter extremen Betriebsbedingungen, wesentlich verbessert werden kann.“

Die Gruppe hat das Verfahren bereits zum Patent angemeldet und will in einer Kooperation mit Industrieunternehmen seine industrielle Verwertbarkeit unter Beweis stellen.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.


Originalveröffentlichung
Spin-Structured Multilayers: A New Class of Materials for Precision Spintronics; Kai Schlage, Lars Bocklage, Denise Erb, Jade Comfort, Hans-Christian Wille, Ralf Röhlsberger; „Advanced Functional Materials”, 2016; DOI: 10.1002/adfm.201603191

Weitere Informationen:

http://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=1099&... - Text und Bildmaterial

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie