Magnetischer Temperaturmesser entdeckt

Thermografische Aufnahme eines integrierten Schaltkreises mittels pyro-magnetischer Optik. Das Bild zeigt sowohl die magnetischen Domänen als auch die Wärmeverteilung entlang der Drähte an. McCord/Wiley

Wer sein Haus energetisch sanieren möchte, nutzt oft die bekannten, gelb bis blau leuchtenden Wärmebilder. Mittels Infrarotmessung sollen dabei Schwachstellen sichtbar gemacht werden. Auch in der Industrie wird die Thermografie bei der Werkstoffprüfung eingesetzt. Abhängig vom Material kann es bei der Methode allerdings zu großen Messfehlern kommen. Aus den Laboren der Christian-Albrechts-Universität zu Kiel (CAU) kommt nun eine Technik, die materialunabhängig minimalste Temperaturunterschiede mit hoher räumlicher Auflösung sichtbar macht. Auch anderen Verfahren macht das neuartige Prinzip Konkurrenz. Das berichten die Forschenden in der aktuellen Ausgabe des Fachjournals Advanced Materials.

Die Wissenschaftler aus Kiel machen sich bei ihrer Entdeckung die magnetischen Eigenschaften eines bestimmten Materials zunutze. In den Experimenten wird eine dünne und transparente Schicht einer Granat-Verbindung (Granat ist ein Mineral aus der Klasse der Silikate) auf den Untersuchungsgegenstand aufgelegt – in diesem Fall ein integrierter Schaltkreis eines Mikrochips. Verändert sich nun die Temperatur irgendwo in dem Schaltkreis auch nur minimal, reagiert das darauf liegende Material mit veränderten magnetischen Eigenschaften. Je wärmer es wird, desto kleiner wird die Magnetisierung.

Diese, je nach Temperatur unterschiedliche, Magnetisierung kann mit einem sogenannten Polarisationsmikroskop sichtbar gemacht werden: Polarisiertes Licht ist Licht, dem eine bestimmte Schwingrichtung aufgezwungen wird (etwa wie bei manchen Sonnenbrillen).

Trifft es auf die Oberfläche der dünnen Schicht, wird es je nach deren Magnetisierung anders reflektiert. Eine digitale, lichtempfindliche Kamera nimmt das zurückgeworfene Licht auf. Die magnetooptischen Aufnahmen zeigen die Temperaturverteilung im Schaltkreis und die winzigen magnetischen Domänen des Materials; das sind abgegrenzte Bereiche, die die gleiche Polarisation haben.

Das von den Kieler Physikern entworfene Material funktioniert als extrem genauer Temperaturmesser. Minimale Veränderungen von bis zu einem Hundertstel Grad Celsius, die in Millisekunden ablaufen, kann die Messmethode mit einer Auflösung von Mikrometern anzeigen. „Unsere Technik eröffnet damit völlig neue Möglichkeiten für verschiedene Wärmebildanwendungen“, ist sich Professor Jeffrey McCord, Leiter der Studie vom Kieler Institut für Materialwissenschaften, sicher.

Denkbar sind neuartige Wärmebildkameras. Insbesondere die Fehleranalyse von elektronischen Bauteilen könnte die „pyro-magnetische Optik“, so der Name des neuen Verfahrens, einfacher und genauer machen.

Die Forschungsergebnisse wurden zusammen mit Wissenschaftlern der russischen Tver State University und dem russischen Forschungsinstitut für Materialwissenschaften und Technologie erzielt.

Originalpublikation:
Kustov, M., Grechishkin, R., Gusev, M., Gasanov, O. and McCord, J. (2015), A Novel Scheme of Thermographic Microimaging Using Pyro-Magneto-Optical Indicator Films. Adv. Mater.. doi:10.1002/adma.201501859
Link: http://dx.doi.org/10.1002/adma.201501859

Bildmaterial steht zum Download bereit:
http://www.uni-kiel.de/download/pm/2015/2015-275-1.jpg
Bildunterschrift: Jeffrey McCord ist Heisenberg-Professor an der Universität Kiel. Dort beschäftigt er sich schwerpunktmäßig mit Magnetismus.
Foto/Copyright: Denis Schimmelpfennig/CAU

http://www.uni-kiel.de/download/pm/2015/2015-275-2.png
Bildunterschrift: Schema der „pyro-magnetischen Optik“, die neue Möglichkeiten für die Wärmebildgebung eröffnet.
Abbildung/Copyright: McCord/Wiley

http://www.uni-kiel.de/download/pm/2015/2015-275-3.jpg
Bildunterschrift: Thermografische Aufnahme eines integrierten Schaltkreises mittels pyro-magnetischer Optik. Das Bild zeigt sowohl die magnetischen Domänen als auch die Wärmeverteilung entlang der Drähte an. Der Punkt, an dem das Gelb in Weiß übergeht, weist auf eine Engstelle mit hoher Wärmeentwicklung hin. Die Temperaturunterschiede reichen in diesem Fall von einem halben bis zu einem Grad Celsius.
Bild/Copyright: McCord

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de

Kontakt:
Prof. Dr. Jeffrey McCord
Institut für Materialwissenschaft
Tel.: 0431/880-6123
E-Mail: jmc@tf.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text: Denis Schimmelpfennig
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de , Jubiläum: www.uni-kiel.de/cau350 
Twitter: www.twitter.com/kieluni , Facebook: www.facebook.com/kieluni

Media Contact

Dr. Boris Pawlowski Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Kombination von Schwerionentherapie und mRNA-Impfstoff

Gemeinsam für die Krebsforschung: TRON und GSI/FAIR untersuchen Kombination von Schwerionentherapie und mRNA-Impfstoff. Es könnte eine neue, vielversprechende Kombination von zwei Therapieansätzen sein und ein Schlüssel, um Krebserkrankungen im fortgeschrittenen…

Partner & Förderer