Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetischer Schalter mit hohem Anwendungspotenzial

27.01.2014
Forschergruppen aus Paris, Newcastle und dem Helmholtz-Zentrum Berlin ist es gelungen, robusten Ferromagnetismus in einem Materialsystem mit einem elektrischen Feld und nahe der Raumtemperatur an- und auszuschalten. Ihre Ergebnisse könnten Anwendungen wie schnelle, energieeffiziente und nichtflüchtige Datenspeicher ermöglichen.

Die Probe bestand aus einem kristallinen Substrat aus BaTiO3, das mit magnetischem FeRh beschichtet war. Schon ein kleines äußeres elektrisches Feld schaltete die magnetische Ordnung in der Probe um.


XMCD-PEEM Bilder zeigen, wie eine elektrische Spannung die magnetische Ordnung verändert. Ohne äußeres, elektrisches Feld (0 V) dominiert die ferromagnetische Ordnung (blaue und rote Punkte).
Bild: HZB


Mit einem äußeren elektrischen Feld (50 V) ist die Probe antiferromagnetisch. Die Messung wurde bei einer Temperatur von 385 Kelvin oder 112 °Celsius gemacht.
Bild: HZB

Experimente an BESSY II sowie weitere Messungen und Berechnungen haben aufgeklärt, was in der Probe geschieht: Da BaTiO3 ferroelektrisch ist, induziert ein äußeres elektrisches Feld mechanische Spannungen im Substrat; diese Spannungen übertragen sich auf den magnetischen FeRh-Film, wodurch sich der magnetische Ordnungszustand dramatisch verändert, von Ferromagnetismus (starke Magnetisierung) zu Antiferromagnetismus (insgesamt Null-Magnetisierung).

Der Effekt ist zehnmal stärker als bislang in anderen Materialien beobachtet und tritt bei einer Temperatur auf, die nicht weit von Raumtemperatur entfernt ist. Die Ergebnisse sind online am 26. Januar in Nature Materials erschienen unter der DOI: 10.1038/nmat3870.

Bislang war es nicht möglich, bei Raumtemperatur Ferromagnetismus mit einem moderat hohen elektrischen Feld einfach an- oder auszuschalten. Doch solche magnetischen Schalter wären sehr nützlich für spintronische Bauelemente und künftige Datenspeicher, die Daten rascher und nichtflüchtig speichern könnten und dafür auch weniger Energie bräuchten als herkömmliche Speicher.

Nun haben Wissenschaftler der Unité Mixte de Physique CNRS/Thales und der Université Paris Sud ein neuartiges Materialsystem hergestellt, das interessante Eigenschaften besitzt: Wie Messungen von Sergio Valencia, Akin Ünal und Florian Kronast vom HZB zeigten, kann die magnetische Ordnung durch ein elektrisches Feld kontrolliert werden. Die Probe reagiert rund zehnmal empfindlicher auf moderate elektrische Felder als bislang bekannte Materialien.

Die neue Struktur besteht aus einem ferroelektrischen BaTiO3 Substrat, das mit einem dünnen magnetischen FeRh-Film beschichtet ist. Um die magnetische Ordnung mit mikroskopischer Auflösung zu ermitteln, untersuchte das HZB-Team die Proben am Spin-aufgelösten Photo-Emissions-Elektronenmikroskop an BESSY II bei unterschiedlichen Spannungen und einer Temperatur von 385 K oder 112 °Celsius. “Schon ein verhältnismäßig niedriges elektrisches Feld löst in der Probe eine dramatische Veränderung aus und schaltet den Ordnungszustand von Ferromagnetismus in Antiferromagnetismus um”, berichtet Valencia. Die detaillierte Analyse der Daten zeigte, dass das Phänomen sowohl durch die mechanische Spannung als auch durch Feldeffekte im BaTiO3 vermittelt wird. Daraus ergibt sich eine magnetoelektrische Kopplung, die eine Größenordnung stärker ist als in bisher untersuchten Materialien.

Die Möglichkeit, mit elektrischer Spannung (und nahezu ohne Stromfluss, also fast ohne Leistung) zwischen magnetischen Ordnungszuständen umzuschalten, ist eine attraktive Alternative zu herkömmlichen Magnetspeichertechnologien, die mit einem Laser im Schreibkopf lokal Hitze erzeugen, um die Magnetisierung eines Bits zu verändern. “Unsere Arbeit zeigt, dass hybride Perowskit/Metall-Systeme wie BaTiO3/FeRh für spintronische Architekturen sehr interessant sind. Solche Systeme könnten sich in Zukunft weiter optimieren lassen, so dass der Effekt auch bei Raumtemperatur auftritt“, sagt Valencia.

Weitere Informationen:

Dr. Florian Kronast
Abt. Magnetisierungsdynamik
Tel.: +49 (0)30-8062-14620
florian.kronast@helmholtz-berlin.de
Dr. Sergio Valencia Molina
Tel.: +49 (0)30-8062-15619
sergio.valencia@helmholtz-berlin.de
Dr. Akin Ünal
Tel.: +49 (0)30-8062-15061
akin.uenal@helmholtz-berlin.de
Pressestelle
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
antonia.roetger@helmholtz-berlin.de
Weitere Informationen:
http://www.helmholtz-berlin.de/pubbin/news_seite?nid=13914
http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat3870.html

Dr. Ina Helms | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie

Speicherdauer von Qubits für Quantencomputer weiter verbessert

09.12.2016 | Physik Astronomie